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Abstract

A central feature of vertebrate immune response is affinity maturation, wherein
antibody-producing B cells undergo evolutionary selection in microanatomical
structures called germinal centers, which form in secondary lymphoid organs
upon antigen exposure. While it has been shown that the median B cell affinity
dependably increases over the course of maturation, the exact logic behind this
evolution remains vague. Three potential selection methods include encouraging
the reproduction of high affinity cells (“birth/positive selection”), encouraging
cell death in low affinity cells (“death/negative selection”), and adjusting the
mutation rate based on cell affinity (“mutational selection”). While all three forms
of selection would lead to a net increase in affinity, different selection methods may
lead to distinct statistical dynamics. We present a tractable model of selection,
and analyze proposed signatures of negative selection. Given the simplicity of the
model, such signatures should be stronger here than in real systems. However,
we find a number of intuitively appealing metrics – such as preferential ancestry
ratios, terminal node counts, and mutation count skewness – require nuance to
properly interpret.
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1 Introduction

In mathematical biology, the term “evolution” has two common associations. The first
is the natural selection of living organisms over time [1] – the second is the algorithmic
optimization of some fitness variable [2–6]. At times, these two meanings are conflated.
In both, a system contains species of diverse fitnesses, with fitter genotypes persisting
longer in time, and mutation generating novel genotypes. In the case of the computa-
tional algorithm, “fitness” is a well defined attribute which directs the dynamics to a
concrete objective. However, real living systems have no universal definition of fitness,
so it is hard to frame it as an optimization process. However, there is one place where
natural and algorithmic evolution coexist – affinity maturation.

A vertebrate’s body is exposed to an endless onslaught of pathogens, to which it
responds by producing a large variety of tailored antibodies that bind to and ultimately
neutralize these threats. Antibodies are initially generated by a genetic reshuffling pro-
cess known as V(D)J recombination [7]. While the efficacy of these initial antibodies
is poor, during infection the body starts generating higher and higher quality anti-
bodies [8, 9], thanks to process known as affinity maturation. Affinity maturation is
a process which occurs in germinal centers (GCs), microanatomical structures that
form within secondary lymphoid organs (e.g. lymph nodes, spleen) upon exposure to
antigen. Here, a diverse population of B cells (each producing their own antibody) is
subjected to evolutionary pressure and high levels of mutation [10]. The objective is to
find an antibody with a high binding affinity to the target antigen [11, 12]. We should
note there is also interest in the topic of broadly neutralizing antibodies [13–15], but
for this paper we will focus on narrow affinity maximization

In essence, the immune system is running an evolutionary optimization algorithm,
with fitness corresponding to antigen-antibody binding affinity. But what is unknown
is the actual algorithm. Historically, some GC models used birth-limited selection (also
known as positive selection), where high fitness cells have accelerated division rates,
whereas others used death-limited selection (also known as negative selection), where
high fitness cells have diminished death rates [16–19]. Presently, there is empirical
evidence for birth-selection, but a lack of evidence of affinity-based death selection [11,
20, 21].

A naive way to model fitness is to just treat it as the difference of birth and death
rates, making it a 1D variable [22]. However, there are many contexts in which it is
important to make fitness multidimensional. For example, in the world of network
Moran models, there is a split between birth-selective and death-selective models [23,
24]. Despite what the 1D perspective would imply, these seemingly equivalent Moran
models can have different outcomes. This is starkly true in fractional takeover times
(the time for a single strain to take over x% of the population), where swapping the
selection method can cause drastic distributional changes [25].

Unfortunately, results for network Moran model takeover times are not amiable to
GCs. Not only do GCs lack a convenient graph structure, but Moran takeover times
are usually calculated in a low-mutation limit, whereas GCs feature Somatic Hyper-
Mutation (SHM). Thanks to SHM, a B cell’s antibody-encoding gene experience on
average one mutation per 103 base pairs per division, a million times the baseline
rate [10, 11, 26].
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Interestingly, there is some evidence that this mutation rate is not constant. So-
called “clonal bursts” may occur in germinal centers, where a single B cell divides
over and over again with apparently low rates of mutation [11, 27]. This suggests the
possibility of there being mutational selection. Imagine two otherwise identical cell
lines with different mutation rates: the genotype with the higher rate will persist less
over time, simply by virtue of its of its offspring constantly turning into new strains.
Therefore, having a differential mutation rate between high and low affinity B cells
would introduce a third form of selection, independent of birth or death selection.

In this paper, we will build an analytically tractable model for selection that incor-
porates birth, death, and mutational selection as independent parameters, rendering a
multidimensional fitness. For the sake of having our results be generalizable to other,
non-GC evolutionary systems, we will avoid incorporating detailed germinal center
mechanics, such as cyclic reentry, interactions with follicular dendritic cells or helper T
cells, and receptor-antigen molecular dynamics [11, 28–31]. While we will continue to
reference GCs as an core example, our results should apply to a wide array of asexual
evolutionary systems.

By building such a simple model, we avoid messy confounding factors, so all signals
of negative selection should appear with maximum fidelity. Therefore, we can pre-
evaluate the usefulness of metrics, and see if they can successfully and qualitatively
discriminate between positive and negative selection. This is an important consid-
eration for experimentalists, since each additional observed metric may represent a
substantial monetary cost, so we demand to know if it can or can not accurately
measure negative selection.

When it comes to experimental design, we ideally wish for this measure of negative
selection to be a static quantity (to prevent the need for multiple measurements across
time), and to have a strong qualitative signal (to prevent the need to account for
microscopic model details and calculations).

Despite the simplicity of our model, we unintuitively find that many seemingly
promising signatures of negative selection confer weak information. That is to say,
many candidate measures of negative selection can not, on their own, be used to
qualitatively prove or disprove the presence of negative selection. However, there are
cases where quantitative bounds can be put on the strength of negative selection, but
that may require system-specific knowledge.

In this paper, we will start by describing our model, as well as its steady state.
Then, we examine patterns in how different genotypes emerge, and analyze phyloge-
netic tree statistics. Finally, we examine the statistics and dynamics of the mutation
count distribution. We conclude that, in many cases, more sophisticated methods will
required to accurately assess if negative selection is present in a system or not.

2 Model of Generic Selection

We will develop a reduced model of n cells evolving in a well-mixed environment. For
the sake of simplicity, we will assume there to be only two distinct affinity phenotypes,
high affinity (H) and low affinity (L). This is not an unprecedented restriction [32],
especially since there are cases where a single mutation can increase affinity by a factor
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of ten [33], essentially rendering the rest of the genome into a high-dimensional neutral
space.

We use a discrete time formulation, where exactly one event (a division or a death)
occurs every timestep. We say that the germinal center has a carrying capacity of
N , and the event is a birth with probability proportional to n, and a death with
probability proportional to n2/N (so the population is stable at n = N , with logistic-
style growth [34, 35].) The odds that a cell dies during a death step is inversely
proportional to its death fitness, which is 1 for low affinity cells and rD ≥ 1 for high
affinity cells – so a higher level of death fitness corresponds to longer-living strains.
Similarly, the odds that a cell divides during a birth step is proportional to its birth
fitness, which is 1 for low affinity cells and rB ≥ 1 for high affinity cells. That is,
rB controls the level of positive selection, and rD controls negative selection. We will
take rB and rD to be finite in the main body of the text, and cover the infinite cases
in appendix B in the supplemental information. If rD = 1, then there is no negative
selection whatsoever, and rB = 1 corresponds to no positive selection.

Since we may have mutational selection, the mutation rates for one affinity line
may be larger than the other. On division, H cells will have a mutation rate of ρH ,
with a ηH chance of the mutant being low affinity and 1−ηH chance of remaining high
affinity (thus being a neutral mutation). Similarly, L cells have a mutation rate of ρL,
with a ηL chance of the mutant being high affinity, and a 1− ηL chance of remaining
low affinity. It is often more useful to use the net transfer rates, so

αH = ρH(1− ηH), βH = ρHηH ,
αL = ρL(1− ηL), βL = ρLηL.

α is the rate of neutral mutations, that is, H→H and L→ L mutations. Meanwhile β
is the rate of mutating into a different affinity H→L and L→H. Note αH + βH = ρH
and αL + βL = ρL.

On a technical note, cellular division is typically symmetric, so one would expect
both daughter cells to have equal odds of being a mutant ρX . However, somatic hyper-
mutation in the germinal center is powered by the action of AID on a single strand of
DNA at a time. So it is possible for one daughter cell to have a mutation rate that is a
million times greater than its sister cell [36, 37]. With that in mind, and for the sake of
notational cleanness, we will only allow one daughter cell of the two to be a potential
mutant, with the other being a copy of the mother cell. In appendix A, we cover the
generic case of arbitrary asymmmetric mutation rates, allowing for both daughters to
be mutants.

3 Net Selection

The most immediate quantity to calculate is the overall level of selection – that is,
what is the final percentage of high affinity cells, h = number of H cells/N?

Per timestep, let PB be the probability of a birth/division, and PD the probability
of death. So,

PB =
1

1 + n/N
,
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Fig. 1: Schematic of different forms of selection. Hatched blue circles represent high
affinity cells, solid red circles represent low-affinity cells. (a) and (b) illustrate posi-
tive/birth selection – as time passes, high affinity cells divide more rapidly than low
affinity cells, crowding them out. (c) and (d) illustrate negative/death selection – as
time passes, the low affinity cells die faster, leaving the high affinity cells to survive. (e)
and (f) illustrate mutational selection – as time passes, the transition gradient causes
the low affinity cells to create a diversity of mutants, with a net increase of affinity.

PD =
n/N

1 + n/N
.

To find the probability of a certain strain dividing, we let ℓ = 1− h and use

ZB =
PB

rBh+ ℓ
,

PBH = rBhZB ,

PBL = ℓZB ,

where ZB is just a normalization factor, and the individual probabilities are propor-
tional to the strain’s population and birth fitness.

Similarly, to find the probability of a certain strain having a death, we use

ZD =
PD

h/rD + ℓ
,

PDH = (h/rD)ZD,

PDL = ℓZD,

where ZD is a normalization factor, and the individual probabilities are proportional
to the strain’s population and inversely proportional to its death fitness.

We will now use these probabilities to estimate the average change in h = # H
cells/n over time. First, the probability that the H population goes down by one is
simply the probability that an H cell dies, so P−1 = PDH . To find the probability
of a new H cell appearing, we need to consider three sources: an H cell divides (w/o
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mutation), an H cell divides (with an H→ H mutation), and an L cell divides (with
an L → H mutation). Putting these together, we get:

P+1 = PBH(1− ρH) + PBHαH + PBLβL

= rBhZB(1− βH) + ℓZBβL.

The average population of high affinity cells changes by P+1−P−1 every time step,
so for large N we can approximate by

∂th = rBhZB(1− βH) + ℓZBβL − (h/rD)ZD. (1)

We want to find the steady-state value of h, so let’s assume we already hit n ≡ N ,
and therefore PD = PB = 1/2. So we want to solve

0 = rB
1− βH

h(rB − 1) + 1
+

βL(1− h)

h(rb + 1
− h/rD

h(1/rD − 1) + 1
.

For reasons which will be obvious later, let’s assume h = 1/(1+ rBg). Substituting
in and rearranging, we get

0 = rBrDβLg
2 + (rBrD(1− βH) + βL − 1) g − βH . (2)

Solving for g (and taking the g ≥ 0 solution) gives

g =
1

2βLrBrD

(
1− βL + rBrD(βH − 1) +

√
ĝ(rBrD)

)
,

where

ĝ(x) = 1 + β2
L + x2(1 + β2

H) + 2xβH(1− x)

+ 2βL(−1 + x)− 2x(1− βHβL).

Therefore,

h(rB , rD) =
1

1 + rBg(rBrD)
, (3)

with the special case at rB = rD = 1 being

h(1, 1) =
βL

βH + βL
. (4)

Notably, while g is symmetric in rB and rD, the net level of selection h is asymmet-
ric in birth and death selectivity, as seen in figure 2. Consider the case where rB ≫ 1
and rD = 1, so high affinity cells are dividing at a much higher rate than low affinity
cells. However, because the transition rate βH is nonzero, many of those new cells will
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be low affinity as well, and will stick around for a while because the negative selection
pressure is nonexistent. In the limit of large rB , then

lim
rB→∞

h(rB , rD) =

(
1 +

βH

rD(1− βH)

)−1

< 1.

This means that there is an effective ceiling of selection for positive selection, wherein
you will always have a mixture of high and low affinity, not matter how selective the
system is. Meanwhile, with negative selection,

lim
rD→∞

h(rB , rD) = 1.

So negative selection has no ceiling whatsoever.
In particular, if a real-world evolutionary system is observed to have

hmeasured > h(∞, 1) = 1− βH , (5)

then said system must have negative selection rD > 0, since the force of positive
selection alone is insufficient to attain that level of pressure. This boundary is indicated
by the dashed contour line in figure 2.

Conversely, because increasing rD monotonically increases h until it reaches 1, if
we know h and the mutation rates βH and βL, we can establish an upper bound on
rD. If we rearrange equation 2 relating rBrD and g, we find

rBrD =
βH/g + 1− βL

βLg + 1− βH
.

Using h = 1/(1 + rBg) simplifies this to

rD =
h

1− h

βHrBh+ (1− βL)(1− h)

(1− βH)rBh+ βL(1− h)
. (6)

This is monotone increasing or decreasing in rB , depending on the strength of muta-
tion. In the case of weak mutation (βH + βL ≤ 1), we can bound the strength of
negative selection via

rD ≤ h

1− h

βHh+ (1− βL)(1− h)

(1− βH)h+ βL(1− h)
. (7)

Meanwhile, if mutation is high (βH + βL > 1), then

rD ≤ h

1− h

βH

1− βH
. (8)

Returning to the specific case of germinal centers, it is well established that a
diversity of affinity levels persists. In experiments, even after three weeks, cells can be
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Fig. 2: Heat map of h via equation (3). Here, αH = 0.196, αL = 0.679, βH = 0.504,
and βL = 0.021. Axes are plotted according to 1− 1/rX to span from one to infinity.
The dashed contour indicates h = 1− βH .

observed with a lower affinity than the initial seed population [38]. With this logic,
if negative selection is present in germinal centers it should not be extremely strong,
though this may also be an artifact of the gap between division and selection being
long enough for us to observe cells slated for death.

As a quick and dirty, back-of-the-envelope example, we can use the standardly
quoted mutation rate of 10−3/per base pair to get ρ ≈ 0.7 [10]. We can use Araki’s
estimates and affinity binning to get transition rates ηH ≈ 0.25 and ηL ≈ 0.024, as well
as a single GC measurement in Araki’s figure 2.30 of h ≈ 68/79 [38]. Naively putting
these numbers into our bounding equation (7) to get an upper bound on the level of
negative selection rD ≲ 2.5. However, since h ≈ 0.86 and 1−βH ≈ 0.825, we we satisfy
the condition in equation (5), which would indicate the presence of negative selection.
So just based on this one limited dataset, with this one specific affinity binning, we
would say 1 < rD ≲ 2.5.

Again, a larger, more dedicated dataset (as well as more GC-centric model) would
be required to put confidence in these numbers. We are not using this paper to specifi-
cally claim proof of negative selection in germinal centers. What we are demonstrating
here is that such bounds are simple to calculate for a given evolutionary system,
and the parameters required for this calculation already can be measured in reason-
able expirements. Therefore, methods such as these should be considered in future
expiremental designs.

4 The Ancestry Hypothesis

While this model may only two affinity levels, we can still have a diversity of genotypic
strains via neutral mutations (e.g., high → high affinity mutation). In principle, we can
keep track of where these strains come from, therefore giving each strain an ancestor
strain. We assume that the genotype space is large compared to the population of
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cells, so every new mutation produces a novel strain. That is to say, if strain A has a
mutation during division, it will produce strain B, and if strain A has another mutation
later on, that second mutation will be distinct from strain B.

Looking at such phylogenetic trees, one might hypothesize that there may be a
hidden signature of negative selection. One candidate signature is preferential ancestry.
That is, we count how many high affinity cells have a high affinity strain as their
ancestor, denoted by FH . Similarly, we let FL be the fraction of low affinity cells with
a high affinity strain as an ancestor.

There are three distinct sources of high affinity cells. Per timestep, we attain an
average of PBH(1 − ρH) high affinity cells from nonmutating high affinity divisions,
PBHαH from mutating high affinity divisions, and PBLβL from low to high affinity
divisions. Similarly, there are two sources of H cells with H ancestors: on average we
get FHPBH(1− ρH) such cells from non-mutating divisions, and PBHαH from H cells
mutating into other H cells.

Taking a steady-state, this means

FH =
FHPBH(1− ρH) + PBHαH

PBH(1− ρH) + PBHαH + PBLβL
.

Keeping in mind PBL/PBH = (1/h− 1)/rB = g(rBrD), then we have

FH =
αH

αH + βLg(rBrD)
. (9)

By a similar accounting, we find that

FL =
βH

βH + αLg(rBrD)
. (10)

Notably, both FH and FL only depend on positive and negative selection through
their product rBrD. As seen by figures 3a and 3b, these preferential ancestry ratios
are perfectly symmetric in these two fitness parameters. Therefore, in this model, such
metrics are ill suited for qualitatively identifying the presence or absence of negative
selection, since it makes no distinction between rB and rD.

It should be noted that we can combine these results with equation for h in (3).
By doing so, we can solve for positive fitnesses, with

rB =
βL

αH

FH

1− FH

1− h

h
, (11)

and

rB =
αL

βH

FL

1− FL

1− h

h
. (12)

Therefore, we can solve for rD exactly using equation (6). While in principle we
can use these equations to estimate rB and rD for real-world expiremental systems,
caution must be taken. The fact remains that FH shows no qualitative transition, so it
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makes for a poor heuristic. The equations above rely on specific, nonuniversal model
details, so their application to real data must be done toughtfully.

As an example of thoughtless application, we can again use the transition rates
from [10] and the phylogenetic tree in figure 2.30 of [38]. While there is ambiguity
as to how to bin low versus high affinity cells, we can eyeball FH = 1 and FL = 8/11.
Using equations (11) and (12), we get rB = ∞ and rB ≈ 1.7. The reason for the
extreme range is the small sample size, combined with the F/(1 − F ) terms leading
to some nasty behavior around F = 1. These values lead to rD ≈ 1.3 and rD ≈ 2.0,
which are unsuprisingly within the 1 < rD < 2.5 bounds we calculated before.

While not conclusive, this “smell test” seems to indicate that FH and FL are
underpowered for estimating fitnesses, at least compared to the easier to measure h.

Terminal Nodes

One related metric worth discussing here is the concept of “terminal nodes.” As the
system of cells continues to divide and reproduce, strains will produce novel mutant
descendants, creating a phylogenetic tree of ancestries. At any point of time, this tree
will have terminal nodes, which are strains with no extant descendants. It can be
conjectured that if most low affinity cells are in terminal nodes, then there ought to
be negative selection at work.

A proper analytic exploration of this metric is somewhat out of scope of this paper,
but we can generate examples numerically. In figure 3c, we show the number of L
cells in terminal nodes divided by the total number of L cells. Notice that this figure
appears symmetric in rB and rD. Intuitively, this makes sense: if L cells only appear
as terminal nodes, then either they die before they divide (high negative selection), or
they don’t get a chance to divide in the first place (high positive selection).

Similarly, the total fraction of cells which are in terminal nodes shows poor signal
in rD in figure 3d. While it might be tempting to tease out a trend, it should be
noted in real-world datasets, phylogenetic trees have to be attained via statistical
reconstruction. The simulations here create the tree with perfect knowledge, whereas
in practice there will be ambiguity over cell terminality, which would likely drown out
whatever slight signal may be present.

In addition, most other ratios involving number of terminal cells can be derived
from the prior two metrics, fH , FL, and the total selection level h. While some terminal
node metrics may have signals of negative selection, they would simply be from the
signal present in the much easier to measure h. Moreover, pilot simulations for counting
number of genotypes (instead of number of cells) suggest the same results.

As such, it is hard to recommend any terminal node metric as a qualitative signal
of negative selection.

5 Mutation Count Distribution

Even though this model has only two phenotypes (low and high affinity), because
of the large neutral space, the number of potential genotypes is extremely high. As
before, we will assert that no two mutation events will ever be identical. That is, it is
unlikely two separate mutation events will lead to the exact same base pair sequence.
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Fig. 3: Heat maps of various tree metrics. (a) Shows FH via equation (9). (b) Shows
FL via equation (10). (c) Shows the final fraction of L cells which are in terminal nodes.
(d) Shows the final fraction of cells which are in terminal nodes. For all, αH = 0.196,
αL = 0.679, βH = 0.504, and βL = 0.021. Axes scale as 1− 1/rX to span from one to
infinity. Simulations for (c) and (d) were ran over N = 1e4 and T = 6e5 steps, for a
total of 60 generations.

If we initialize the germinal center with a population of genetically identical cells, we
should be able to count how many mutations are accumulated in each cell line.

If a species grows at a rate r and has a mutation rate ρ, then you’d expect the
population to accrue mutations at an average rate of rρ. In our model, we have two
separate growth rates and mutation rates, rB & ρH and 1 & ρL, but the actual
average accumulation rate is somewhat more complicated due to the L→ H and H →
L mutations coupling the two mutation distributions.

More to the point, dynamically measuring a population’s mutational distribution
is not always a good option. For many biological systems, doing a genotypic survey
can be expensive and/or destructive (e.g., needing to destroy a germinal center to
analyze its B cells), so measuring dynamical properties is usually unappealing.

However, if the distribution of mutation counts is different between low and high
affinity cells, then intuitively the overall mutation count distribution ought to be
asymmetric. That is, we can hypothesize that the mutation count distribution ought
to have some level of skew over long times, as in figure 4. Moreover, a back of the
envelope calculations suggests that the skew would approach a constant value over
time. Skew is calculated via the central moments Ca, and a naive examination would
suggest Ca ∝ ta. Therefore, the skew would look like

Skew =
C3

(C2)3/2
≈ t3

(t2)3/2
= constant.

Because this is a prediction of the long-term shape of the distribution, and not its
dynamics, it can be measured and approximated by a single snapshot genotypic survey.
The experimental advantage of taking one measurement over a longitudinal study
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Fig. 4: Schematic showing the intuition behind the skew hypothesis. Here, different
levels of mutational activity causes a split between the high fitness and low fitness B
cells, producing skewness in the overall distribution.

need not be elaborated upon. Moreover, this final skew value should be a function
of the different fitness parameters. Therefore, one can hypothesize that measuring
mutational skew may be a good indicator of negative selection.

What follows is an explanation as to why this hypothesis is false.
To investigate the mutation count distribution, let’s assume that the overall affinity

of the population has hit a steady state. Next, let us define hm to be the number of
high affinity cells with m mutations, divided by the total number of cells n. Similarly,
we let ℓm be the fraction of cells which are low affinity and have m mutations, and
nm = hm + ℓm. Note that

∑
m hm = h, and

∑
m ℓm = ℓ = 1− h.

To construct the dynamics for hm, we do some basic accounting. Sources for H
cells with m mutations are H and L cells with m−1 mutations, as well as H cells with
m mutations. In the single-mutant dynamics, the only sink is the natural death rate.
Therefore, the dynamics are given by

∂thm = (1− ρH) (hmrBZB) + αH (hm−1rBZB) + βL (ℓm−1ZB)− (hm/rD)ZD

∂tℓm = (1− ρL) (ℓmZB) + αL (ℓm−1ZB) + βH (hm−1rBZB)− ℓmZD.

To get the central moments C, we first need the regular moments. To find the
moments of the mutational distributions, we define the moments Hk :=

∑
m mkhm

and Lk :=
∑

m mkℓm for the H and L populations respectively. Taking ∂t of both
sides, we get

∂tHk =

[
(1− βH) rBZB − ZD

rD

]
Hk + βLZBLk +

k−1∑
w=0

(
k

w

)
(rBαHZBHw + βLZBLw)

(13)
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∂tLk = [(1− βL)ZB − ZD]Lk + rBβHZBHk +

k−1∑
w=0

(
k

w

)
(rBβHZBHw + αLZBLw),

(14)

where we handled hm−1 and ℓm−1 by changing the sum index and using the binomial
theorem, and taking h−1 = ℓ−1 = 0.

While unpleasant to look at, this is fundamentally a linear system of equations.
Moreover, since each k’th moment only depends on moments k to 0, this gives it a
block lower-triangular structure, which should be amenable to analysis. In principle,
a closed-form solution involving matrix exponentials should be possible. However, in
appendix C, we show that this approach is both numerically and theoretically fraught,
due to the dynamical matrix becoming poorly conditioned over time. Therefore, a
slightly different approach is needed.

To make analysis easier, we will instead use the following change of variables, and
assume at least one of rB and rD are larger than 1:

Mk := Hk + Lk, (15)

Sk := (rBZBβH/ℓ)Hk + (ZBβL/h)Lk. (16)

Mk represents the k’th moment of the mutation count distribution for the overall
population, including both H and L cells. Meanwhile, the definition of Sk was just
chosen to make the dynamics cleaner, as given by

∂tMk = − τMk + Sk +MM

k−1∑
w=0

(
k

w

)
Mw +MS

k−1∑
w=0

(
k

w

)
Sw, (17)

∂tSk = SM

k−1∑
w=0

(
k

w

)
Mw + SS

k−1∑
w=0

(
k

w

)
Sw. (18)

The prefactors are given by

MM = ZB
ρLβH − rBρHβLg

βH − βLg
,

MS =
rBρH − ρL

rBβH/ℓ− βL/h
,

and

SM =
rBZ

2
BβHβL

rBβHh− βLℓ
(βH/g − rBβLg + αL − rBαH) ,

SS = ZB
rBβHαH + βHβL(rBg − 1)− αLβLg

βH − gβL
.
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Fig. 5: Plot of the mutation count’s (a) average M1 and (b) variance C2. he circles
are values attained from simulation, using N = 2.5e5, rB = 10, and rD = 5, with
αH = 0.196, αL = 0.679, βH = 0.504, and βL = 0.021. The dashed line indicates the
slope as predicted by (19) in (a), and by (24) in (b).

τ is given by

τ = ZB

(
βH

g
+ βLrBg

)
.

Notice that τ > 0 always, so it functions as a proper timescale for the system.
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Fig. 6: Plot of the mutation count’s (a) third central moment C3 and (b) skew. The
circles are values attained from simulation, using N = 2.5e5, rB = 10, and rD = 5,
with αH = 0.196, αL = 0.679, βH = 0.504, and βL = 0.021. The dashed line in
(a) indicates the predicted slope of C3 (via appendix D), and in (b) a 1/

√
t curve to

illustrate the gradual decay, as predicted by equation (25).

Also note that Sk only depends on lower order terms, meaning that it is possible
to get exact solutions by iteratively solving. Both Sk and Mk will be polynomials in
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time t with a maximum degree k, plus some other terms that decay exponentially with
rate τ .

Looking at the definitions of M and S in (15) and (16), it is easy to see M0 = 1
and S0 = τ . By solving the differential equations for k = 1, we get

S1(t) = τµt+ θS1 ,

M1(t) = µt+
(
MM + τMS + θS1

)
/τ +

(
θM1 − (MM + τMS + θS1 )/τ

)
e−τt,

where the θ terms are just initial conditions, and µ := SM/τ +SS . That is to say, the
growth rate of the average number of mutations over time is µ, which can be rewritten
as

µ = rBZB
αHβH/g + αLβLg + 2βHβL

βH/g + rBβLg
. (19)

Omitting the details of the recursion (which can be found in appendix D), we get
that the leading order behavior for the k’th moment is given by

Mk[t
k] = µk. (20)

As expected, the k’th moment grows like tk, and the leading rate follows a simple form.
The expression for the first correction (which is needed to calculate the distribution’s
skew) is somewhat more unwelcoming, with

Mk[t
k−1] =

k

τ
µk−1θS1 + kµk−2

[
(k − 1)

2
µ+

(
SM

τ
(k − 1) + µ

)(
MM

τ
+MS − µ

τ

)]
.

(21)

In order to calculate the mutation distribution’s skew and variance, we will need
the central moments. The a’th central moment is defined by

Ca = ⟨(m−M1)
a⟩

=

a∑
k=0

(
a

k

)
MkM1

a−k(−1)a−k.

Just as with the regular moments, these should be polynomials of maxium degree a
and decaying exponential corrections.

We don’t need the full solution for the central moment, just the leading growth
term. But by some careful manipulation (also found in appendix D), we find that the
supposed “leading” term is always zero,

Ca[t
a] = 0. (22)

When we try the next leading order term, we similarly find for a ̸= 2 that

Ca[t
a−1] = 0. (23)
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Fig. 7: Heat diagram of the growth rate µ of the average mutation count M1, via
equation (19). Here, αH = 0.196, αL = 0.679, βH = 0.504, and βL = 0.021. Axes are
plotted according to 1− 1/rX to span from one to infinity.

However, for the special case of a = 2, we get

C2[t
1] = µ+

2SM

τ

(
MM

τ
+MS − µ

τ

)
. (24)

While C2 has a t1 term, we find C3 has no t2 term, C4 has no t3 term, and so on.
In particular, we now know that the variance (given by C2) and the third cen-

tral moment (C3) must grow linearly in time. This is corroborated by simulation in
figures 5a,5b, and 6a.

With this knowledge, we can finally estimate the skew of the mutant distribution.
Plugging into the definition of skew, we find

Skew =
C3

C2
3/2

=
O(t)

O(t3/2)
→ 0. (25)

This is supported by simulation results in 6b, where the skew indeed decays as 1/
√
t.

Therefore, there will be no long-term skew in the mutation count histogram, regardless
of the choice of fitnesses. And so, the hypothesis outlined at the start of the section is
false.

6 Discussion

Uncovering the mechanisms behind an evolutionary process is key – not only for
advancing understanding and recreating natural systems [39–41], but also for improv-
ing our own optimizing algorithms [2, 42, 43], and providing avenues for better medical
interventions [26].
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evaluating equation (24) at a = 2. Here, αH = 0.196, αL = 0.679, βH = 0.504, and
βL = 0.021. Axes are plotted according to 1− 1/rX to span from one to infinity.

Based on our work, certain proposed metrics for measuring such mechanisms are
somewhat underwhelming, since we lack clear qualitative signals present in other evo-
lutionary models [25]. For example, preferential ancestry ratios and mutational count
skewness are symmetric in rB and rD, so we don’t get an easy rule of thumb.

The net selectivity h, however, is asymmetric in positive and negative fitness, and
can be used to set bounds on rD. That being said, doing so may require detailed
knowledge of mutation rates. Since an evolutionary system may employ time-variable
mutational adaptation (e.g., a cell line mutating rapidly while exposed to stress), rates
measured in vitro may differ in vivo. So while we have demonstrated that it is easy to
create these inequalities, care must be taken before using them in a real-world system.

It should be noted that many other metrics we could propose here are simply
redundant with h. For example, if we were to take the average number of mutations
in L cells and divide by the average among H cells, the ratio would converge to rBg.
While this is certainly asymmetric, it gives no new information compared to the more
accessible metric h.

This is not to say that no signature of mechanism exist – it is just that snapshot-
style metrics have difficulty capturing dynamical differences. For example, the growth
rate of average mutation count expresses mild asymmetry in figure 7, which only grows
more pronounced when looking at the variance in figure 8. However, genotypic surveys,
especially for microscopic cells, tend to be highly invasive, so the experimental burden
of measuring any of these quantities may be too great to recommend.

However, perfect symmetry is rare in the real world. In an actual examination,
one might expect that a quantity such as FH would have some asymmetry, or that
the mutational skew would take on some long-term value, simply by the vagaries of
nature. While the germinal center may have many black boxes, there are many in
silica and in vitro experiments one can do which have highly controlled evolutionary
mechanisms, some of which may contradict such perfect results. However, the model
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presented here is highly generic, especially considering the results from appendix A.
If such a discrepancy were to be acknowledged, then it would cast doubt on many
classes of mathematical evolutionary models.

One final complication specific to GCs may lie in the details of cyclic reentry. The
essence of this scheme is that B cells move back and forth between two zones within
the GC – a “dark zone” where division takes place, and a “light zone” where B cells are
evaluated for affinity [11, 28, 29, 31, 44]. Many evolutionary models treat reproduction
and fitness measurement as simultaneous. Here, there is ostensibly a period of “fitness
blindness,” where cells live and divide unaware of their own affinity/fitness, introducing
noise in the fitness landscape [45, 46]. Moreover, depending on how the mutation-
proffering AID is used, the actual mutation rates of cell lines may wildly fluctuate,
leading to hypothetical scenarios where the number of mutations is unproportional to
the number of divisions. If that is the case, we may need to use a multistage, seasonal
growth model [47].
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[3] Bäck, T., Schwefel, H.-P.: An overview of evolutionary algorithms for parameter
optimization. Evolutionary computation 1(1), 1–23 (1993)

18



[4] Bartz-Beielstein, T., Branke, J., Mehnen, J., Mersmann, O.: Evolutionary algo-
rithms. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery
4(3), 178–195 (2014)

[5] Yu, X., Gen, M.: Introduction to Evolutionary Algorithms. Springer, New York
(2010)

[6] Whitley, D., Rana, S., Dzubera, J., Mathias, K.E.: Evaluating evolutionary
algorithms. Artificial intelligence 85(1-2), 245–276 (1996)

[7] Tonegawa, S.: Somatic generation of antibody diversity. Nature 302(5909), 575–
581 (1983)

[8] Eisen, H.N., Siskind, G.W.: Variations in affinities of antibodies during the
immune response. Biochemistry 3(7), 996–1008 (1964)

[9] Ada, G.L., Nossal, S.G.: The clonal-selection theory. Scientific American 257(2),
62–69 (1987)

[10] McKean, D., Huppi, K., Bell, M., Staudt, L., Gerhard, W., Weigert, M.: Gener-
ation of antibody diversity in the immune response of balb/c mice to influenza
virus hemagglutinin. Proceedings of the National Academy of Sciences 81(10),
3180–3184 (1984)

[11] Victora, G.D., Nussenzweig, M.C.: Germinal centers. Annual review of immunol-
ogy 30, 429–457 (2012)

[12] Berek, C., Berger, A., Apel, M.: Maturation of the immune response in germinal
centers. Cell 67(6), 1121–1129 (1991)

[13] Sok, D., Laserson, U., Laserson, J., Liu, Y., Vigneault, F., Julien, J.-P., Briney,
B., Ramos, A., Saye, K.F., Le, K., et al.: The effects of somatic hypermutation
on neutralization and binding in the pgt121 family of broadly neutralizing hiv
antibodies. PLoS pathogens 9(11), 1003754 (2013)

[14] Doria-Rose, N.A., Joyce, M.G.: Strategies to guide the antibody affinity matura-
tion process. Current opinion in virology 11, 137–147 (2015)

[15] Ferretti, F., Kardar, M.: Universal characterization of epitope immunodominance
from a multi-scale model of clonal competition in germinal centers. arXiv preprint
arXiv:2310.10966 (2023)

[16] Amitai, A., Mesin, L., Victora, G.D., Kardar, M., Chakraborty, A.K.: A pop-
ulation dynamics model for clonal diversity in a germinal center. Frontiers in
microbiology 8, 1693 (2017)

[17] Gitlin, A.D., Shulman, Z., Nussenzweig, M.C.: Clonal selection in the germinal
centre by regulated proliferation and hypermutation. Nature 509(7502), 637–640

19



(2014)

[18] Liu, Y., Joshua, D., Williams, G., Smith, C., Gordon, J., MacLennan, I.: Mecha-
nism of antigen-driven selection in germinal centres. Nature 342(6252), 929–931
(1989)

[19] Meyer-Hermann, M.: A molecular theory of germinal center b cell selection and
division. Cell Reports 36(8) (2021)

[20] Mayer, C.T., Gazumyan, A., Kara, E.E., Gitlin, A.D., Golijanin, J., Viant, C., Pai,
J., Oliveira, T.Y., Wang, Q., Escolano, A., et al.: The microanatomic segregation
of selection by apoptosis in the germinal center. Science 358(6360), 2602 (2017)

[21] Stewart, I., Radtke, D., Phillips, B., McGowan, S.J., Bannard, O.: Germinal cen-
ter b cells replace their antigen receptors in dark zones and fail light zone entry
when immunoglobulin gene mutations are damaging. Immunity 49(3), 477–489
(2018)

[22] Murray, J.D.: Mathematical Biology. Springer, New York (1993)

[23] Kaveh, K., Komarova, N.L., Kohandel, M.: The duality of spatial death–birth and
birth–death processes and limitations of the isothermal theorem. Royal Society
open science 2(4), 140465 (2015)

[24] Yagoobi, S., Sharma, N., Traulsen, A.: Categorizing update mechanisms for
graph-structured metapopulations. Journal of the Royal Society Interface
20(200), 20220769 (2023)

[25] Ottino-Loffler, B., Scott, J.G., Strogatz, S.H.: Evolutionary dynamics of incuba-
tion periods. ELife 6, 30212 (2017)

[26] Young, C., Brink, R.: The unique biology of germinal center b cells. Immunity
54(8), 1652–1664 (2021)

[27] Tas, J.M., Mesin, L., Pasqual, G., Targ, S., Jacobsen, J.T., Mano, Y.M., Chen,
C.S., Weill, J.-C., Reynaud, C.-A., Browne, E.P., et al.: Visualizing antibody
affinity maturation in germinal centers. Science 351(6277), 1048–1054 (2016)

[28] Oprea, M., Van Nimwegen, E., Perelson, A.S.: Dynamics of one-pass germinal cen-
ter models: implications for affinity maturation. Bulletin of mathematical biology
62, 121–153 (2000)

[29] Yaari, G., Benichou, J.I., Vander Heiden, J.A., Kleinstein, S.H., Louzoun, Y.:
The mutation patterns in b-cell immunoglobulin receptors reflect the influence of
selection acting at multiple time-scales. Philosophical Transactions of the Royal
Society B: Biological Sciences 370(1676), 20140242 (2015)

[30] Victora, G.D., Dominguez-Sola, D., Holmes, A.B., Deroubaix, S., Dalla-Favera,

20



R., Nussenzweig, M.C.: Identification of human germinal center light and dark
zone cells and their relationship to human b-cell lymphomas. Blood, The Journal
of the American Society of Hematology 120(11), 2240–2248 (2012)

[31] Bannard, O., Horton, R.M., Allen, C.D., An, J., Nagasawa, T., Cyster, J.G.:
Germinal center centroblasts transition to a centrocyte phenotype according to
a timed program and depend on the dark zone for effective selection. Immunity
39(5), 912–924 (2013)

[32] Oprea, M., Perelson, A.S.: Somatic mutation leads to efficient affinity maturation
when centrocytes recycle back to centroblasts. Journal of immunology (Baltimore,
Md.: 1950) 158(11), 5155–5162 (1997)

[33] Allen, D., Simon, T., Sablitzky, F., Rajewsky, K., Cumano, A.: Antibody engi-
neering for the analysis of affinity maturation of an anti-hapten response. The
EMBO journal 7(7), 1995–2001 (1988)

[34] Verhulst, P.-F.: Notice sur la loi que la population poursuit dans son accroisse-
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Appendix A Asymmetric Mutation Rates

In this section, we will show that having non-identical mutation rates between the
daughter cells produces the same results.

In particular, if an H cell divides, its first daughter has a αH1 chance of mutating
into another H cell and a βH1 chance of becoming a L cell, and the second daughter has
αH2 and βH2. Similarly, the individual daughters of an L cell have an L→L transition
rate of αL1 and αL2, and an L→H transition rate of βL1 and βL2 respectively. We define
the total transition rates as β̄X = βX1 + βX2, ᾱX = αX1 + αX2, ρXn = βXn + αXn,
and ρ̄X = β̄X + ᾱX . To avoid trivial fixed points, we require β̄H and β̄L to be nonzero.

Note that while we require β̄H and β̄L to be nonzero, nothing prevents, say,
βH1 = αH1 = 0. Here, one daughter would always be indistinguishable from the
parent, which recreates the case from the main paper and some models of sexual repro-
duction. Similarly, if we want a more typical asexual reproduction model, setting the
two daughters to have identical rates will do that for you.

Also, while instances of extreme mutation can be interesting, we shall also require
β̄H and β̄L to be less than 1 to avoid some pathological regimes. For example, if
β̄H > 1, then rB → ∞ would unintuitively cause the high fitness population to go
extinct, since h decreases per division.

On a division event, the total population of high fitness (H) cells can change by
+2, +1, 0, -1, depending on the identity of the parent and the offspring. For example,
if a low fitness (L) cell divides, and the first daughter mutates into a H cell and the
second daughter is a nonmutated L cell, this would cause +1 new H cells. We notate
this event as (L → H∗L), where the ∗’s identify the daughters as mutants, and the
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order tracks the identity of the daughters. Using this notation, we can write down all
the H-changing events as

P+2 = (L → H∗H∗) ,

P+1 = (H → HH) + (H → H∗H) + (H → HH∗) + (H → H∗H∗)

+ (L → H∗L) + (H → LH∗) + (L → H∗L∗) + (H → L∗H∗) ,

P−1 = (H → L∗L∗) + (H → Death) .

Given that h is the fraction of the population which is H cells and ℓ is the fraction
which is L cells, we can write the above events as probabilities to get

∂th = 2P+2 + P+1 − P−1

= rBhZB [(1− ρH1)(1− ρH2) + αH1(1− ρH2) + (1− ρH1)αH2 + αH1αH2 − βH1βH2]

+ ℓZB [βL1βL2 + βL1(1− ρL2) + (1− ρL1)βL2 + αL1βL2 + βL1αL2]− (h/rD)ZD,

where ZB and ZD are defined as before. This simplifies into

∂th = rBhZB(1− β̄H) + ℓZBβ̄L − (h/rD)ZD.

This is identical to the ∂th equation in the single mutation case (section III in the
main body), so all the results from that section would apply with the substitution
βH → β̄H and and the like. In particular,

h =
1

1 + rBg(rBrD)
.

If we are careful about accounting cells in the same manner as about, we retrieve
familiar ancestry ratios fH and fL

fH =
ᾱH

ᾱH + β̄Lg(rBrD)
,

fL =
β̄H

β̄H + ᾱLg(rBrD)
.

We also get familiar equations for the number of mutations within strains, with

{
∂thm = (1− ρ̄H) (hmrBZB) + ᾱH (hm−1rBZB) + β̄L (ℓm−1ZB)− hm

rD
ZD,

∂tℓm = (1− ρ̄L) (ℓmZB) + ᾱL (ℓm−1ZB) + β̄H (hm−1rBZB)− ℓmZD.

Hence, all results from the main body also apply to the general case of asymmetrically
mutating daughters.
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Appendix B Infinite fitness edge cases

Throughout this paper we considered only finite fitnesses, but on various heat plots, we
include the case of rB = ∞ and rD = ∞. Here we will discuss the approach for each.
Moreover, for the sake of completeness, we will allow both daughters to be mutants,
as in appendix A.

B.1 Limit of large positive selection.

In the case of infinite birth fitness, only high fitness cells divide. So PBH = PB and
PBL = 0 so long as h > 0. In such as case,

P+2 = 0,

P+1 = (H → HH) + (H → H∗H) + (H → HH∗) + (H → H∗H∗)

= PBH

(
1− β̄H + βH1βH2

)
,

P−1 = (H → L∗L∗) + (H → Death)

= PBHβH1βH2 + PDH .

This means the average growth rate of high-fitness cells becomes

∂th =
1

2

(
1− β̄H

)
− h

rD
ZD.

The steady state can be solved from here to get

h =
rD(1− β̄H)

rD(1− β̄H) + β̄H
.

Similarly, the equations for the mutant populations also get simplified, with

∂thm =
hm

2h
(1− ρ̄H),

∂tℓm =
hm−1

2h
β̄H − ZDℓm.

While simpler, the structure is similar to that in section V in the main body, so we
can just take the results from there and take the limit of rB → ∞ to quickly get the
results. Notably, we have

lim
rB→∞

ZB = 0

lim
rB→∞

rBg =
β̄H

rD(1− β̄H)
,

lim
rB→∞

ZB/g =
rB
2h

1− β̄H

β̄H
,
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lim
rB→∞

rBZB =
1

2h
.

As applied to the building blocks of equations for ∂tMk and ∂tSk (from section V in
the main body), we have

τ = rD
1− βH

2h
,

MM = 0,

MS = ℓ
ρ̄H
β̄H

,

SM = 0,

SS =
ᾱH

2h
.

Although some terms go to zero, this does not disrupt the rest of the analysis, leading
to the same conclusion about the skew approaching zero.

B.2 Limit of large negative selection.

Although the limit of large positive selection was routine, a little more care must be
taken with large negative selection. For example, trying to naively take the rD → ∞
limit to the results of the main body’s section V leads to the timescale τ diverging.

Because of the high level of negative selection, so long as any L cells exist, no H
cells will die. In fact, an attempt to write an equation for h yields

∂th = ℓZBβ̄L + h(1− β̄H)ZB .

Notably, this is strictly positive so long as β̄H < 1. So, absent finite-size errors, h → 1
is assured.

Because there is no low-fitness population worth talking about, we have that the
H population is the full population, so Hk = Mk. In particular, we have

∂thM =
ᾱH

2
(hm−1 − hm),

where the 1/2 term comes from the fact that at steady state, PB = PD = 1/2. We
therefore have

∂tMk =
αH

2

k−1∑
w=0

(
k

w

)
Mw.

This is recursively solvable, recalling that M0 = 1. Letting γ := ᾱH/2, the first three
orders are given by

M1 = γt+ θM1 ,

M2 = γ2t2 + (2γθM1 + γ)t+ θM2 ,
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M3 = γ3t3 + 3γ2(θM1 + 1)t2 + γ(3θM2 + 3θM1 + 1)t+ θM3 .

Therefore, the variance is given by

C2 = M2 − (M1)
2

= γt+ θM2 −
(
θM1
)2

,

and the third central moment is given by

C3 = M3 − 3M2M1 + 2(M1)
3

= γt+ θM3 − 3θM2 θM1 + 2(θM1 )3.

That is to say, the mean, variance, and third central moment all grow with at the
exact same rate of γ = ᾱH/2. Therefore, the skew goes as

Skew =
C3

(C2)3/2
=

γt+ const.

(γt+ const.)3/2
→ 0.

So, just as in the main case, we have no long-term skew appearing.

Appendix C The Matrix Exponential Solution

In the main body, we got equations for the moments of L and H populations

∂tHk =

[
(1− βH) rBZB − ZD

rD

]
Hk + βLZBLk

+ rBαHZB

k−1∑
w=0

(
k

w

)
Hw + βLZB

k−1∑
w=0

(
k

w

)
Lw (C1)

∂tLk = [(1− βL)ZB − ZD]Lk + rBβHZBHk

+ rBβHZB

k−1∑
w=0

(
k

w

)
Hw + αLZB

k−1∑
w=0

(
k

w

)
Lw. (C2)

Let us vectorize the system in equations (C1) and (C2) by letting −→m =
(H1,L1,H2,L2,H3,L3)

T , where we truncate to k = 3, since our goal is to find the
skew. Therefore, the dynamics are given by

∂t
−→m = J−→m +−→v ,
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where the odd entries of −→v are hrBαHZB + βLZBℓ, and the even entries are
hrBβHZB + αLZBℓ. Meanwhile, J is a block matrix of the form:

J =

 JD 0 0
2JS JD 0
3JS 3JS JD

 ,

with

JD =

(
rBZB(1− βH)− ZD/rD βLZB

rBZBβH ZB(1− βL)− ZD

)
,

and

JS =

(
rBαHZB βLZB

rBZBβH αLZB

)
.

So long as the determinant of J is nonzero, this means that the moments are, in
principle, exactly solvable, via

−→m(t) = eJt(−→m(0) + J−1−→v )− J−1−→v .

The determinant of J is decided by JD. So calculating |JD| gives

|JD| = rBZ
2
B(1− βH)(1− βL)− rBZBZD(1− βH)− ZBZD(1− βL)/rD + Z2

D/rD − rBβHβLZ
2
B .

If we calculate at population steady-state (n = N), then we have

ZB

ZD
= 1 + 2

(
r−1
D − rB

)
hZB ,

ZD

ZB
= 1 + 2

(
r−1
D − rB

)
hZD.

Therefore,

|JD|Z−1
B Z−1

D = rB
ZB

ZD
[(1− βH)(1− βL)− βHβL]− rB(1− βH)− (1− βL)

1

rD
+

1

rD

ZD

ZB

= rB(1− βH − βL)
(
1 + 2(r−1

D − rB)hZB

)
+

1

rD

(
1 + 2(r−1

D − rB)hZD

)
− rB(1− βH)− (1− βL)

1

rD

= rB(1− βH)− rBβL + 2rB(1− βL − βH)
(
r−1
D − rB

)
hZB +

1

rD

+ 2
(
rB − r−1

D

) h

rD
ZD − rB(1− βH)− (1− βL)

1

rD

=
(
r−1
D − rB

)
(βL + 2rB(1− βL − βH)hZB − 2hZD/rD)

=
(
r−1
D − rB

)
(2rBhZB(1− βH)− 2hZD/rD + 2ℓZBβL − 2ℓZBβL + βL − 2rBβLhZB)

=
(
r−1
D − rB

)
(2∂th+ βL [1− 2ZB(rBh+ ℓ)])

=
(
r−1
D − rB

)
(2∂th+ βL [1− 1]) ,
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and so we get

|JD| = 2
(
r−1
D − rB

)
ZBZD∂th.

As the system approaches a phenotypic equilibrium, we have ∂th → 0. So if we want
to find long-time dynamics (or worse, stationary state dynamics), then this vectorized
formulation is ill suited for numerical and analytical examination.

Appendix D Recusion for Mutant Moments

In this section, we will produce the recursion equations that define the growth of the
moments of the mutant distribution Mk, and give the leading-order results for the
central moments Ca.

Specifically, we have the following system of equations

∂tMk = − τMk + Sk +MM

k−1∑
w=0

(
k

w

)
Mw +MS

k−1∑
w=0

(
k

w

)
Sw, (D3)

∂tSk = SM

k−1∑
w=0

(
k

w

)
Mw + SS

k−1∑
w=0

(
k

w

)
Sw, (D4)

where

Mk := Hk + Lk, (D5)

Sk := (rBZBβH/ℓ)Hk + (ZBβL/h)Lk, (D6)

for all k ≥ 1.
By hypothesis, we assume the solutions take the form of polynomials, with

Sk =

k∑
w=0

qSk
w tw +

k−2∑
w=0

pSk
w twe−τt, (D7)

and

Mk =

k∑
w=0

qMk
w tw +

k−1∑
w=0

pMk
w twe−τt, (D8)

where qMk
w , pMk

w , qSk
w , and pSk

w are coefficients to be determined, and we take
coefficients with index w < 0 to be zero.

Just as in the main text, the k = 1 step is easy to verify. We start with the S1

equation, and substitute appropriate values for M0 and S0 based on their definitions
in (D5) and (D6), and get

∂tS1 = SMM0 + SSS0

= SM (h+ ℓ) + SS(rBZBβHh/ℓ+ ZBβLℓ/h)

= SM + SSτ.
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For future notational convenience, we define

µ := SM/τ + SS . (D9)

Therefore, we have S1(t) = τµt+θS1 , where we use θ
S
k := Sk(t = 0) and θMk := Mk(t =

0).
Similarly, we have

∂tM1 = − τM1 + S1 +MMM0 +MSS0

= − τM1 + qS1
1 t+ (MM + τMS) + qS1

0 .

Integrating gives us

M1 = µt+
(
MM + τMS + θS1

)
/τ +

(
θM1 − (MM + τMS + θS1 )/τ

)
e−τt,

so to leading order, the mean mutation count grows at a rate µ := SM/τ + SS .
With a base established, we can create the inductive step to establish a recursion

relation for the various coefficients. By subbing equations (D8) and (D7) into (D4),
we get

∂tSa+1 =

a∑
k=0

d
S(a+1)
k tk +

a−1∑
k=0

c
S(a+1)
k tke−τt

where

d
S(a+1)
k =

a∑
w=k

(
a+ 1

w

)(
SMqMw

k + SSq
Sw
k

)
(D10)

c
S(a+1)
k = (a+ 1)SMpMa + SM

a−2∑
w=k

(
a+ 1

w + 1

)
p
M(w+1)
k + SS

a−2∑
w=k

(
a+ 1

w + 2

)
p
S(w+2)
k

(D11)

where we used lemma 3 in appendix E to collect terms appropriately, and we take the
convention that

∑y
w=x zw = 0 when x > y.

If we plug these into the expressions in lemma 1 in appendix E, we get

Sa+1 =

a+1∑
k=0

q
S(a+1)
k tk +

a−1∑
k=0

p
S(a+1)
k tke−τt

with

q
S(a+1)
k =

1

k
d
S(a+1)
k−1 , k ≥ 1 (D12)
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q
S(a+1)
0 = θSa+1 +

a−1∑
w=0

w!

τw+1
c
S(a+1)
k (D13)

p
S(a+1)
k = −

a−1∑
w=k

w!

k!τw+1
c
S(a−1)
k . (D14)

By a similar procedure, we have that

∂tMa+1 + τMa =

a+1∑
k=0

d
M(a+1)
k tk +

a−1∑
k=0

c
M(a+1)
k tke−τt

with

d
M(a+1)
k = q

S(a+1)
k +

a∑
w=k

(
a+ 1

w

)(
MMqMw

k +MSq
Sw
k

)
(D15)

c
M(a+1)
k = p

S(a+1)
k +MM (a+ 1)pMa

k +

a−2∑
w=k

[(
a+ 1

w + 1

)
p
M(w+1)
k MM +

(
a+ 1

w + 2

)
p
S(w+2)
k MS

]
.

(D16)

If we plug these into the expressions in lemma 2 in appendix E, we then get

Ma+1 =

a+1∑
k=0

q
M(a+1)
k tk +

a∑
k=0

p
M(a+1)
k tke−τt

with

q
M(a+1)
k =

a+1∑
w=k

w!

k!

(−1)w−k

τw−k+1
dM(a+1)
w (D17)

p
M(a+1)
k =

1

k
c
M(a+1)
k−1 , k ≥ 1 (D18)

p
M(a+1)
0 = θMa+1 +

a+1∑
w=0

w!
(−1)w+1

τw+1
dM(a+1)
w . (D19)

If we insert (D16) and (D15) into equation (D17) and evaluate at k = a+1, we get

q
M(a+1)
a+1 =

1

τ
q
S(a+1)
a+1 . (D20)

Similarly, if we insert (D11) and (D10) into equation (D12) and evaluate at k = a+1,
we find

q
S(a+1)
a+1 = SMqMa

a + SSq
Sa
a . (D21)
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Putting equations (D20) and (D21) together gives the following closed forms via
induction, using the fact that µ = SS + SM/τ :

qMa
a = µa, (D22)

qSa
a = τµa. (D23)

If we instead evaluate (D12) and (D17) at k = a, we get

qS(a+1)
a =

a+ 1

2
τµa +

a+ 1

a

(
SMqMa

a−1 + SSq
Sa
a−1

)
,

qM(a+1)
a =

1

τ
qS(a+1)
a +

µa

τ
(a+ 1) (MM +MSτ − µ) .

Naturally, we can insert one into the other to find

qS(a+1)
a =

a+ 1

a
µqSa

a−1 + µa−1(a+ 1)
(µτ

2
+ SM [MM/τ +MS − µ/τ ]

)
.

If we then solve this via the lemma 4 in appendix E, we get for a ≥ 1

qSa
a−1 = aµa−1qS1

0 + a(a− 1)µa−2 (µτ/2 + SM [MM/τ +MS − µ/τ ]) .

Therefore, the subleading coefficient for the ath moment is

qMa
a−1 =

a

τ
µa−1qS1

0 + aµa−2

[
(a− 1)µ

2
+

(
SM

τ
(a− 1) + µ

)(
MM

τ
+MS − µ

τ

)]
.

(D24)
To recap, equation (D22) is the leading order coefficient of the growth of the

ath moment of mutation counts, and (D24) is the subleading coefficient. This gives
us enough information to calculate the behavior of the central moments, which
characterize the shape of the mutation count histogram.

The ath central moment is given by

Ca = ⟨(m−M1)
a⟩

= ⟨
a∑

k=0

(
a

k

)
mkM1

a−k(−1)a−k⟩

=

a∑
k=0

(
a

k

)
MkM1

a−k(−1)a−k.

We take a ≥ 2, since the first central moment is definitionally zero.
If we substitute in the polynomial forms of the Mk terms and collect all the

exponential terms under E , we get

Ca =

a∑
k=0

(
a

k

)( k∑
w=0

qMk
w tw

)(
qM1
0 + µt

)a−k
(−1)a−k + E
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If we collect terms, this takes on the following form:

Ca =

a∑
b=0

tb
a∑

k=0

(
a

k

)
(−1)a−k

min(b,a−k)∑
w=max(0,b−k)

fa,k(w, b− w) + E , (D25)

fa,k(w, r) =

(
a− k

w

)(
qM1
0

)a−k−w
qMk
r µw,

where the bounds on the sum are from the first argument of f needing to be less than
a− k, the second has to be less than k, and their sum must be b.

Via the general form of the moments Ma (Equation (D8)), we know the leading
term of the central moments grows at most as ta. So to get the proper coefficient, we
evaluate the b = a term to get

Ca[t
a] =

a∑
k=0

(
a

k

)
(−1)a−k

min(a,a−k)∑
w=max(0,a−k)

fa,k(w, a− w)

=

a∑
k=0

(
a

k

)
(−1)a−kfa,k(a− k, a− (a− k))

=

a∑
k=0

(
a

k

)
(−1)a−k

(
a− k

a− k

)(
qM1
0

)a−k−(a−k)
qMk
k µ(a−k)

=

a∑
k=0

(
a

k

)
(−1)a−kqMk

k µ(a−k)

=

a∑
k=0

(
a

k

)
(−1)a−kµkµ(a−k)

= µa
a∑

k=0

(
a

k

)
(−1)a−k1k

= µa(1− 1)a.

Note the use of equation (D22). Therefore, we have that for all a ≥ 1, then

Ca[t
a] = 0. (D26)

In other words, every central moment grows at most as ta−1.
To find the a−1 order coefficient, we pull the b = a−1 term from Equation (D25).

Here,

Ca[t
a−1] =

a∑
k=0

(
a

k

)
(−1)a−k

min(a−1,a−k)∑
w=max(0,(a−1)−k)

fa,k(w, (a− 1)− w)
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=

a∑
k=0

(
a

k

)
(−1)a−k (fa,k(a− k − 1, k) + fa,k(a− k, k − 1))

=

a∑
k=0

(a− k)

(
a

k

)
(−1)a−kqN1

0 µa−1 +

a∑
k=1

(
a

k

)
(−1)a−kqNk

k−1µ
a−k,

where we already inserted (D22). If we also insert (D24), we find

Ca[t
a−1] = qN1

0 µa−1
a∑

k=0

(
a

k

)
(−1)a−k(a− k) + qS1

0

µa−1

τ

a∑
k=1

(
a

k

)
(−1)a−kk

+ µa−2

[
µ

2
+

SM

τ

(
MM

τ
+MS − µ

τ

)] a∑
k=1

(
a

k

)
(−1)a−kk(k − 1)

+ µa−1

[
MM

τ
+MS − µ

τ

] a∑
k=1

(−1)a−k

(
a

k

)
k.

While this is unpleasant to look at, all the sums simplify to various Kronecker deltas
δj,k. Keeping in mind a ≥ 2 and eliminating the appropriate deltas, this simplifies to

Ca[t
a−1] = δa,2

[
µ+

2SM

τ

(
MM

τ
+MS − µ

τ

)]
. (D27)

This is nonzero when a = 2, and zero otherwise. This returns us to the results in the
main text.

Appendix E Useful Lemmas

A number of elementary lemmas appear in our induction proofs, so for ease of reference
they have been collected here.
Lemma 1. Given the following equation for z,

ż = −τz +

m∑
k=0

dkt
k +

n∑
k=0

ckt
ke−τt,

we have the solution

z(t) =

m∑
k=0

qkt
k +

n+1∑
k=0

pkt
ke−τt

with

qk =

m∑
w=k

dw
w!

k!

(−1)w−k

τw−k+1

pk = ck−1/k, k ≥ 1
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p0 = z(0) +

m∑
k=0

qk(−1)k+1 k!

τk+1
.

Lemma 2. Given the following equation for z,

ż =

m∑
k=0

dkt
k +

n∑
k=0

ckt
ke−τt,

we have the solution

z(t) =

m+1∑
k=0

qkt
k +

n∑
k=0

pkt
ke−τt

with

qk = dk−1/k, k ≥ 1

q0 = z(0) +

n∑
k=0

dk
k!

τk+1

pk = −
n∑

w=k

cw
w!

k!

1

τw−k+1
.

Lemma 3.
m∑

k=0

k∑
w=0

f(k,w) =

m∑
k=0

m∑
w=k

f(w, k)

m∑
k=0

k−1∑
w=0

f(k,w) =

m−1∑
k=0

m−1∑
w=k

f(w + 1, k)

m∑
k=0

k−2∑
w=0

f(k,w) =

m−2∑
k=0

m−2∑
w=k

f(w, k)

Lemma 4. If Xa+1 = AaXa +Ba, then

Xa = X1

a−1∏
k=1

Ak +

a−1∑
k=1

Bk

a−1∏
w=k+1

Aw.
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