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φi  = 0 to 180 

φi  = 180 to 360 

φi φ i + 1 φ i-1 

φi  = Phase of Light i 



TC = Travel time between lights 

TL = Full period of light 

Td = Time between greens for consecutive lights 

        (assumed to be constant) 

SOME PARAMETERS  

EQUIVALENTLY 

ω = 2π/TL = Angular velocity of lights 

Δφ = - ω* Td = Phase difference between consecutive lights  

REDUCES TO 

r = TL /TC 

rd = Td / Tc ( so 0 < rd < r) 



If rd = 1 (i.e., Td = TC), “Green Wave” 

If rd = r/2+1 (i.e., Td = TC + TL/2), “Red Wave” 

Will turn green as 
soon as car arrives 

Will turn red as soon 
as car arrives 

Summary Green Wave  Red Wave 

Forward Direction rd = 1 rd = r/2 +1 

Reverse Direction rd = r - 1 rd = r/2 - 1 



ANALYTIC SOLUTION 

<Velocity> = Velocity * Time Spent Moving / Total Time 

NLT = Number of lights the car passes between 

stopping red lights 

<Velocity> =  V ∗ NLT 
r ∗ ceil(NLT/M) + r

 d ∗
NLT 

 

Then 

If we let  

M = r / (1 - rd) 

Where NLT is a function of M  
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Analytic Solution for r = 7.5

 

 

Mean

Rightwards

Leftwards
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Analytic Solution for r = 10

 

 

Mean

Rightwards

Leftwards

Efficiency! 



0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
ff
ic

ie
n

c
y

r
d

Matlab Sim (no frustration) for r = 7.5

 

 

Predicted

Observed
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Matlab Sim (with frustration) for r = 7.5
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Predicted

Observed

Simulations and Edge Effects? 
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Matlab Sim for r = 7.5 and 10% Density

 

 

Predicted

Observed

Fermionic Cars? 
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Matlab Sim for r = 7.5 and 52% Density

 

 

Predicted

Observed

Some Values are More Sensitive. 
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Matlab Sim for r = 7.5 and rd = 0.9375

Varying Density versus Average Speed 

We Find Critical Densities 
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Matlab Sim for r = 7.5 and rd = 0.703125
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Matlab Sim for r = 7.5 and rd = 1.40625

Critical Points Aren’t Dependable 



 

𝑑𝜙𝑖
𝑑𝑡
= 𝜔𝑖 +

𝐾

𝑁
 sin(𝜙𝑗 − 𝜙𝑖 + 𝛼)

𝑁

𝑗=1

  Kuramoto Coupling: 

Something Completely Different 

Our lights are oscillators 

So why don’t we couple them? 

K = Coupling strength 

N = Number of lights 

𝛼 = Phase delay 

𝜙𝑖= Phase of light i 

𝜔𝑖= Angular velocity of light i 



t = 0 

Uniform ω is boring 

t = 250 t = 500 

…But what if we introduce decay factor? 
 

𝑑𝜙𝑖
𝑑𝑥
= 𝜔𝑖 +

𝐾

𝑁
 𝐆 𝐱 − 𝐱′ ∗ sin(𝜙𝑗 − 𝜙𝑖 + 𝛼)

𝑁

𝑗=1

  



“Chimera States” on a 1D ring 

-- Coherent population moves as one 

-- Incoherent population moves  

    (almost) randomly 

-- In the future, we will apply this to the 

    ring of lights and see what happens.  
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