# Traffic Simulation on a Two-Way Street

Presented by Bertrand Ottino-Löffler Mentor: Daniel Abrams (Northwestern University) Associate Mentor: John Doyle (Caltech) Additional Help from Mark Panaggio And additional thanks to the Mellon Mays Fellowship





#### SOME PARAMETERS

$$T_{\rm C}$$
 = Travel time between lights  
 $T_{\rm L}$  = Full period of light  
 $T_d$  = Time between greens for consecutive lights  
(assumed to be constant)

#### EQUIVALENTLY

 $\omega = 2\pi/T_L$  = Angular velocity of lights

 $\Delta \varphi = -\omega * T_d$  = Phase difference between consecutive lights

#### **REDUCES TO**

$$r = T_{\rm L}/T_{\rm C}$$
  

$$r_{\rm d} = T_{\rm d} / T_{\rm c} (\text{ so } 0 \le r_{\rm d} \le r)$$

If  $r_d = 1$  (i.e.,  $T_d = T_c$ ), "Green Wave"





| Summary                  | Green Wave             | Red Wave              |
|--------------------------|------------------------|-----------------------|
| Forward Direction        | r <sub>d</sub> = 1     | $r_{\rm d} = r/2 + 1$ |
| <b>Reverse Direction</b> | r <sub>d</sub> = r - 1 | $r_{\rm d} = r/2 - 1$ |

#### ANALYTIC SOLUTION

<Velocity> = Velocity \* Time Spent Moving / Total Time
If we let
NLT = Number of lights the car passes between
stopping red lights

$$M = r / (1 - r_d)$$

Then

 $\langle \text{Velocity} \rangle = \frac{\text{V} * \text{NLT}}{\text{r} * \text{ceil}(\text{NLT/M}) + \text{r}_{d} * \text{NLT}}$ 

Where *NLT* is a function of *M* 

Efficiency!



#### Simulations and Edge Effects?



#### Fermionic Cars?



#### Some Values are More Sensitive.



# Varying Density versus Average Speed



#### Critical Points Aren't Dependable



# Something Completely Different

Our lights are oscillators So why don't we couple them?

Kuramoto Coupling:

$$\frac{d\phi_i}{dt} = \omega_i + \frac{K}{N} \sum_{j=1}^N \sin(\phi_j - \phi_i + \alpha)$$

N

K = Coupling strength N = Number of lights  $\alpha$  = Phase delay  $\phi_i$  = Phase of light *i*  $\omega_i$  = Angular velocity of light *i* 

# Uniform $\omega$ is boring



t = 0

t = 250

t = 500

...But what if we introduce decay factor?

$$\frac{d\phi_i}{dx} = \omega_i + \frac{K}{N} \sum_{j=1}^{N} \mathbf{G}(\mathbf{x} - \mathbf{x}') * \sin(\phi_j - \phi_i + \alpha)$$

#### "Chimera States" on a 1D ring

- -- Coherent population moves as one
- -- Incoherent population moves (almost) randomly
- -- In the future, we will apply this to the ring of lights and see what happens.

# References

1. Daniel M. Abrams, Rennie Mirollo, Steven H. Strogatz, and Daniel A. Wiley. Solvable model for chimera states of coupled oscillators. *Physical Review Letters*, 101(8):084103, 2008.

2. Daniel M. Abrams and Steven H. Strogatz. Chimera states for coupled oscillators. *Physical Review Letters*, 93(17):174102, October 2004.

3. Daniel M. Abrams and Steven H. Strogatz. Chimera states in a ring of nonlocally coupled oscillators. *International Journal of Bifurcation and Chaos*, 16(1):21–37, January 2006.

4. Carlos Gerhenson. Self-organizing Traffic Lights. *Complex Behavior*, 16(1)

5. M.J. Lighthill and G.B. Whitham. On Kinematic Waves. II. A Theory of Traffic Flow on Long Crowded Roads. Proc. R. Soc. Lond. A May 10, 1955 229 (1178)317-345

6. I. Prigogine and R. Herman . Kinetic Theory of Vehicular Traffic. American Elsevier Pub. Co. 1971

7. P. Serafini. A mathematical model for the fixed-time traffic control problem. *European Journal of Operational Research*, 42(2):152-165, September 1986

8. Steven Strogatz. From Kuramoto to Crawfrord: exploring the onset of synchronization in populations of coupled oscillators, *Physica D*, 143:1-20, 2000

9. Wilensky, U. (2003). NetLogo Traffic Grid model. <u>http://ccl.northwestern.edu/netlogo/models/TrafficGrid</u>. Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL.

10. Wilensky, U. (1999). NetLogo. <u>http://ccl.northwestern.edu/netlogo/</u>. Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL.