Traffic Simulation on a Two-Way Street

Presented by Bertrand Ottino-Löffler
Mentor: Daniel Abrams (Northwestern University)
Associate Mentor: John Doyle (Caltech)
Additional Help from Mark Panaggio
And additional thanks to the Mellon Mays Fellowship

φ_{i}
0
0
0

SOME PARAMETERS

$T_{\mathrm{C}}=$ Travel time between lights
$T_{\mathrm{L}}=$ Full period of light
$T_{d}=$ Time between greens for consecutive lights (assumed to be constant)

EQUIVALENTLY

$$
\begin{aligned}
& \omega=2 \pi / \mathrm{T}_{\mathrm{L}}=\text { Angular velocity of lights } \\
& \Delta \varphi=-\omega^{*} T_{d}=\text { Phase difference between consecutive lights }
\end{aligned}
$$

REDUCES TO

$$
\begin{aligned}
& r=T_{\mathrm{L}} / T_{\mathrm{C}} \\
& r_{\mathrm{d}}=T_{\mathrm{d}} / T_{\mathrm{c}}\left(\text { so } 0 \leq \mathrm{r}_{\mathrm{d}} \leq \mathrm{r}\right)
\end{aligned}
$$

If $r_{d}=1$ (i.e., $T_{d}=T_{\mathrm{C}}$), "Green Wave"

If $r_{d}=r / 2+1$ (i.e., $T_{d}=T_{C}+T_{\mathrm{L}} / 2$), "Red Wave"

Will turn red as soon as car arrives

Summary	Green Wave	Red Wave
Forward Direction	$r_{\mathrm{d}}=1$	$r_{\mathrm{d}}=r / 2+1$
Reverse Direction	$r_{\mathrm{d}}=r-1$	$r_{\mathrm{d}}=r / 2-1$

ANALYTIC SOLUTION

<Velocity> = Velocity * Time Spent Moving / Total Time
If we let
$N L T=$ Number of lights the car passes between stopping red lights

$$
M=\mathrm{r} /\left(1-r_{\mathrm{d}}\right)
$$

Then
<Velocity> $=\frac{\mathrm{V} * \text { NLT }}{\mathrm{r} * \operatorname{ceil}(\mathrm{NLT} / \mathrm{M})+\mathrm{r}_{\mathrm{d}} * \mathrm{NLT}}$

Where $N L T$ is a function of M

Efficiency!

Simulations and Edge Effects?

Fermionic Cars?

Some Values are More Sensitive.

Varying Density versus Average Speed

Critical Points Aren't Dependable

Something Completely Different

Our lights are oscillators So why don't we couple them?

Kuramoto Coupling: $\quad \frac{d \phi_{i}}{d t}=\omega_{i}+\frac{K}{N} \sum_{j=1}^{N} \sin \left(\phi_{j}-\phi_{i}+\alpha\right)$
$K=$ Coupling strength
$N=$ Number of lights
$\alpha=$ Phase delay
$\phi_{i}=$ Phase of light i
$\omega_{i}=$ Angular velocity of light i

Uniform ω is boring

$\mathrm{t}=0$

$\mathrm{t}=250$

$\mathrm{t}=500$
...But what if we introduce decay factor?

$$
\frac{d \phi_{i}}{d x}=\omega_{i}+\frac{K}{N} \sum_{j=1}^{N} \mathbf{G}\left(\mathbf{x}-\mathbf{x}^{\prime}\right) * \sin \left(\phi_{j}-\phi_{i}+\alpha\right)
$$

"Chimera States" on a 1D ring
-- Coherent population moves as one
-- Incoherent population moves (almost) randomly
-- In the future, we will apply this to the ring of lights and see what happens.

References

1. Daniel M. Abrams, Rennie Mirollo, Steven H. Strogatz, and Daniel A. Wiley. Solvable model for chimera states of coupled oscillators. Physical Review Letters, 101(8):084103, 2008.
2. Daniel M. Abrams and Steven H. Strogatz. Chimera states for coupled oscillators. Physical Review Letters, 93(17):174102, October 2004.
3. Daniel M. Abrams and Steven H. Strogatz. Chimera states in a ring of nonlocally coupled oscillators. International Journal of Bifurcation and Chaos, 16(1):21-37, January 2006.
4. Carlos Gerhenson. Self-organizing Traffic Lights. Complex Behavior, 16(1)
5. M.J. Lighthill and G.B. Whitham. On Kinematic Waves. II. A Theory of Traffic Flow on Long Crowded Roads. Proc. R. Soc. Lond. A May 10, 1955229 (1178)317-345
6. I. Prigogine and R. Herman . Kinetic Theory of Vehicular Traffic. American Elsevier Pub. Co. 1971
7. P. Serafini. A mathematical model for the fixed-time traffic control problem. European Journal of Operational Research, 42(2):152-165, September 1986
8. Steven Strogatz. From Kuramoto to Crawfrord: exploring the onset of synchronization in populations of coupled oscillators, Physica D, 143:1-20, 2000
9. Wilensky, U. (2003). NetLogo Traffic Grid model. http://ccl.northwestern.edu/netlogo/models/TrafficGrid. Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL.
10. Wilensky, U. (1999). NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL.
