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Population Growth
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Why Are There So Many Population Models?

Figure: Ciorut, a (2016)
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Richards’ Equation

The Richards’ Equation generalizes the logistic equation’s
second-order term, so

∂ty = µy − ay α .

This is commonly used in forestry and epidemics, but the value of
α isn’t always motivated.
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A Spatial Population Model As An Origin

The Fisher Equation

The Mean-Field Fisher Equation is given by

∂ty = µy − ay2 + D(ȳ − y),

where

µ sets growth rate,

a sets saturation population,

D sets diffusion rate, and

ȳ is the spatial average.
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A Mean-Field Model
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Fitness is Time Dependent

Figure: Merrell (1994)
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Randomness in Fitness is Seascape Noise

We respresent seascape noise by treating the fitness parameter µ
as noisy. So,

µ→ µ+ ση,

where η is a stochastic term with unit variance and zero mean.
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Seascape Noise

The Mean-Field Seascape Fisher Equation

The Fisher Equation with seascape noise is written as

∂ty = µy − ay2 + D(ȳ − y) + σyη ,

where yη represents randomness in fitness and enviroment
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Stationary State First
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Good News:

If a stationary state exists, then the spatial average pop. ȳ
should be the same as the ensemble averaged pop. 〈y〉 via the
Law of Large Numbers.
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Bad News:

In the absence of noise, the Fisher equation converges to
ȳ → µ/a.
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Bad News:

In the absence of noise, the Fisher equation converges to
ȳ = µ/a.

However, ȳ 6→ µ/a in the presence of noise.

BJOL Seascape Extinction



Bad News:

In the absence of noise, the Fisher equation converges to
ȳ = µ/a.

However, ȳ 6→ µ/a in the presence of noise.

ȳ must be obtained through self-consistency.
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Self-Consistent

To be self consistent, we need

∂t〈y〉 = 0

Therefore, we need

0 = 〈µy − ay2 + D(ȳ − y) + σyη〉
= µȳ − a〈y2〉

So our condition is
µȳ = a〈y2〉
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Distribution Solution

Distribution in the Growth Case

When µ > 0, the population distribution under seascape noise is
proportional to

ρ̂(y , ȳ) = e−cD ȳ/yy−2−cD+cµe−cay .

where cD = 2D/σ2, cµ = 2µ/σ2, and ca = 2a/σ2, and ȳ is chosen
self-consistently.
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ρ̂(y , ȳ) = e−ȳ/yy−γe−y
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Self-Consistent mean

Using the cutoffs in ρ̂, we can estimate

µȳ = a〈y2〉 = a

∫∞
0 y2ρ̂(y , ȳ)dy∫∞

0 ρ̂(y , ȳ)dy
,

and solve the self-consistency condition.
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Mean Pop at Small Fitness

Scaling Law for Seascape Noise

In the extinction limit, the population mean scales with the fitness
as:

ȳ ∝
{
µ, 2D > σ2;

µσ
2/(2D), 2D < σ2.

Notice that when 2D/σ2 < 1, we have an anomalous scaling
exponent.
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Moment Ratio with µ > 0

Because we know the correct value of ȳ , we can calculate higher
moments, and find that

〈y2〉
〈y〉2 =

2D

2D − σ2
, 2D > σ2 ;

〈y2〉
〈y〉2 ∝ µ−σ

2/(2D)+1, 2D < σ2 .

So as µ gets small, the variance may or may not get large
compared to the mean.
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Phase Diagram for Seascape Noise
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High D =⇒ Low Variance
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Low D =⇒ High Variance
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Taking Stationary Solution into Dynamics....

Assume the distribution still looks like ρ̂, but for a time-varying ȳ ...

0 1 2 3
0

0.4

0.8

1.2
small ȳ
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Fisher Averaged leads to Richards’ Equation

Near extinction, the mean of the Stochastic Fisher Eq. behaves as

∂t〈y〉 = µ〈y〉 − a〈y2〉+ D〈ȳ − y〉+ 〈σyη〉
= µ〈y〉 − a〈y2〉
≈ µ〈y〉 − aȳ1+β,

which is a Richards’ Equation!
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Dynamics of the Mean
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Final Summary

Seascape Noise + Spatial Diffusion

⇓

Anomalous, Nonuniversal Power Laws

⇓

Richards’ Equation!
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Questions?

Also available at: ottinoloffler.com
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Different Kinds of Noise

Tails y small y intermediate y large

Seascape exp [1/y ] y−η exp [−y ]

Demographic y−η exp[−y ] exp
[
−y2

]
Mixed y−η (y + r)−γ exp [−y ]
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