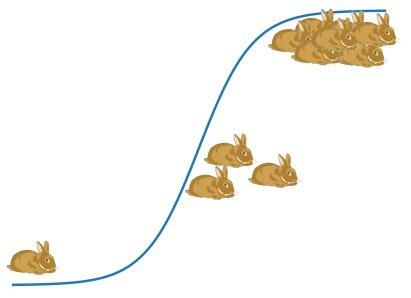
Population Extinction on a Random Fitness Seascape

Bertrand Ottino-Löffler & Mehran Kardar

MIT

March 17, 2021

Population Growth



Why Are There So Many Population Models?

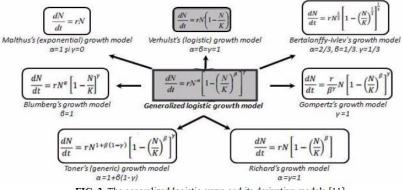


FIG. 3. The generalized logistic curve and its derivative models [11]

Figure: Cioruța (2016)

イロト イポト イヨト イヨト

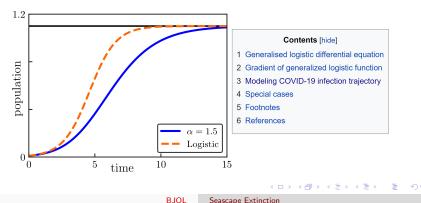
э

Richards' Equation

The **Richards' Equation** generalizes the logistic equation's second-order term, so

$$\partial_t y = \mu y - a y \alpha$$
.

This is commonly used in forestry and epidemics, but the value of α isn't always motivated.



BJOL

A Spatial Population Model As An Origin

The Fisher Equation

The Mean-Field Fisher Equation is given by

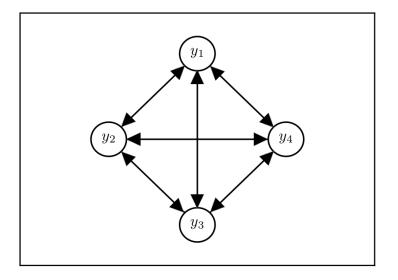
$$\partial_t y = \mu y - a y^2 + D(\bar{y} - y),$$

where

- µ sets growth rate,
- a sets saturation population,
- D sets diffusion rate, and
- \bar{y} is the spatial average.

▲ □ ▶ ▲ □ ▶ ▲

A Mean-Field Model



<ロト <回 > < 回 > < 回 > < 回 > :

æ

Fitness is Time Dependent

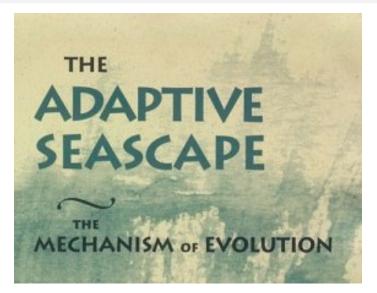


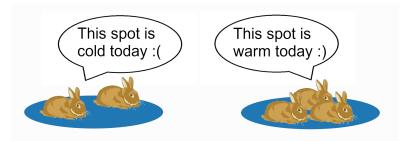
Figure: Merrell (1994)

Randomness in Fitness is Seascape Noise

We respresent seascape noise by treating the fitness parameter $\boldsymbol{\mu}$ as noisy. So,

$$\mu \to \mu + \sigma \eta$$
,

where η is a stochastic term with unit variance and zero mean.



< 同 > < 国 > < 国 >

The Mean-Field Seascape Fisher Equation

The Fisher Equation with seascape noise is written as

$$\partial_t y = \mu y - a y^2 + D(\bar{y} - y) + \sigma y \eta$$

where $y\eta$ represents randomness in fitness and environment

Stationary State First

BJOL Seascape Extinction

<ロト <回 > < 回 > < 回 > < 回 > :

э

If a stationary state exists, then the spatial average pop. y
 should be the same as the ensemble averaged pop. (y) via the
 Law of Large Numbers.

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶

 \blacksquare In the absence of noise, the Fisher equation converges to $\bar{y} \rightarrow \mu/a.$

- In the absence of noise, the Fisher equation converges to $\bar{y} = \mu/a$.
- However, $\bar{y} \not\rightarrow \mu/a$ in the presence of noise.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

- In the absence of noise, the Fisher equation converges to $\bar{y} = \mu/a$.
- However, $\bar{y} \not\rightarrow \mu/a$ in the presence of noise.
- \bar{y} must be obtained through self-consistency.

ヘロト 人間 とくほ とくほ とう

э

Self-Consistent

To be self consistent, we need

$$\partial_t \langle y \rangle = 0$$

Therefore, we need

$$0 = \langle \mu y - ay^2 + D(\bar{y} - y) + \sigma y \eta \rangle$$
$$= \mu \bar{y} - a \langle y^2 \rangle$$

So our condition is

$$\mu ar{y} = a \langle y^2
angle$$

▲ □ ▶ ▲ □ ▶ ▲

Distribution in the Growth Case

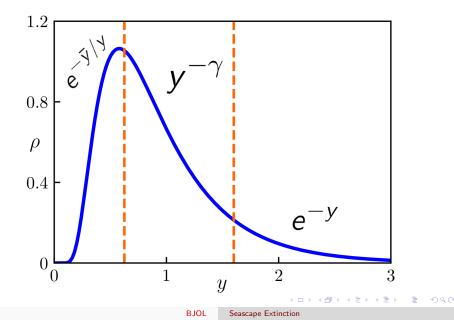
When $\mu > 0$, the population distribution under seascape noise is proportional to

$$\hat{\rho}(y,\bar{y}) = e^{-c_D\bar{y}/y}y^{-2-c_D+c_\mu}e^{-c_ay}$$

where $c_D = 2D/\sigma^2$, $c_\mu = 2\mu/\sigma^2$, and $c_a = 2a/\sigma^2$, and \bar{y} is chosen self-consistently.

・ 同 ト ・ ヨ ト ・ ヨ ト

 $\hat{
ho}(y,\bar{y})=e^{-\bar{y}/y}y^{-\gamma}e^{-y}$



Using the cutoffs in $\hat{\rho},$ we can estimate

$$\mu ar{y} = a \langle y^2
angle = a rac{\int_0^\infty y^2 \hat{
ho}(y,ar{y}) dy}{\int_0^\infty \hat{
ho}(y,ar{y}) dy},$$

and solve the self-consistency condition.

▲御▶ ▲ 陸▶ ▲ 陸▶ -

э

Scaling Law for Seascape Noise

In the extinction limit, the population mean scales with the fitness as:

$$ar{y} \propto egin{cases} \mu, & 2D > \sigma^2; \ \mu^{\sigma^2/(2D)}, & 2D < \sigma^2. \end{cases}$$

Notice that when $2D/\sigma^2 < 1$, we have an anomalous scaling exponent.

・ 同 ト ・ ヨ ト ・ ヨ ト

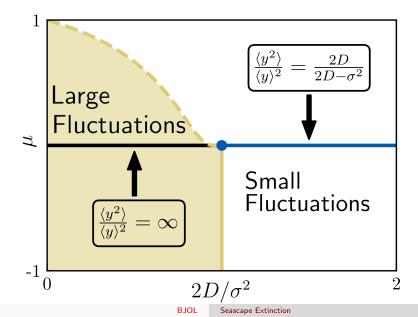
Because we know the correct value of \bar{y} , we can calculate higher moments, and find that

$$egin{aligned} & \langle y^2
angle \ = \ rac{2D}{2D-\sigma^2}, & 2D > \sigma^2 \ ; \ & \langle y^2
angle \ & \langle y
angle^2 \propto \ \mu^{-\sigma^2/(2D)+1}, & 2D < \sigma^2 \ . \end{aligned}$$

So as μ gets small, the variance may or may not get large compared to the mean.

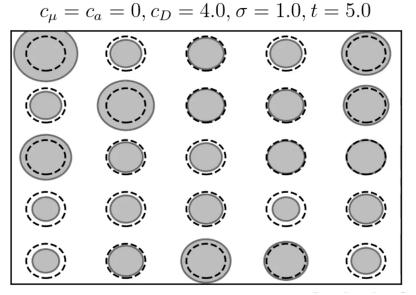
イロト 不得 トイヨト イヨト 二日

Phase Diagram for Seascape Noise



590

High D \implies Low Variance



Low D \implies High Variance

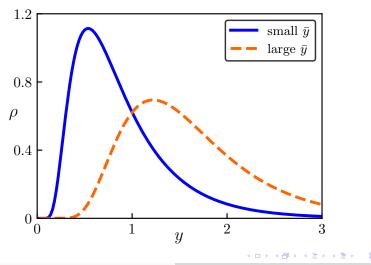
 $c_{\mu} = c_a = 0, c_D = 0.5, \sigma = 1.0, t = 5.0$

BJOL

Seascape Extinction

Taking Stationary Solution into Dynamics....

Assume the distribution still looks like $\hat{\rho}$, but for a time-varying \bar{y} ...



BJOL

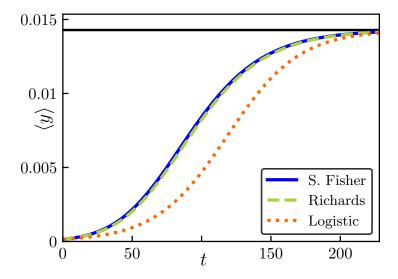
Seascape Extinction

Near extinction, the mean of the Stochastic Fisher Eq. behaves as

$$\begin{array}{ll} \partial_t \langle y \rangle = & \mu \langle y \rangle - a \langle y^2 \rangle + D \langle \bar{y} - y \rangle + \langle \sigma y \eta \rangle \\ \\ &= & \mu \langle y \rangle - a \langle y^2 \rangle \\ \\ &\approx & \mu \langle y \rangle - a \bar{y}^{1+\beta}, \end{array}$$

which is a Richards' Equation!

Dynamics of the Mean



BJOL

Seascape Extinction

Final Summary

${\small {\sf Seascape Noise + Spatial Diffusion}}$

₩

Anomalous, Nonuniversal Power Laws

₩

Richards' Equation!

BJOL Seascape Extinction

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶

э

This research was supported by James S. McDonnell Foundation Award No. 220020540 (B.O.), as well as by NSF through Grants No. DMR-1708280 and No. PHY-2026995 (M.K.).

▲御▶ ▲臣▶ ▲臣▶

Selected References

B. Ottino-Löffler, M. Kardar, Population Extinction on a Random Fitness Seascape, Phys. Rev. E 102, 052106 (2020).

D. J. Merrell, The adaptive seascape: the mechanism of evolution (U of Minnesota Press, 1994).

- O. Ovaskainen and B. Meerson, Trends in ecology & evolution 25, 643 (2010).
- J. Desponds, T. Mora, and A. M. Walczak, Proceedings of the National Academy of Sciences 113, 274 (2016).
- R. Durrett and S. Levin, Theoretical population biology 46, 363 (1994).

- C. Van den Broeck, J. M. R. Parrondo, J. Armero, and A. Hernández-Machado, Phys. Rev. E 49, 2639 (1994).
- O. Hallatschek and K. S. Korolev, Phys. Rev. Lett. 103, 108103 (2009).
- M. Kardar, G. Parisi, and Y.-C. Zhang, Phys. Rev. Lett. 56, 889 (1986).

◆□ → ◆問 → ◆臣 → ◆臣 →

Questions?

PHYSICAL REVIEW E 102, 052106 (2020)

Population extinction on a random fitness seascape

Bertrand Ottino-Löffler and Mehran Kardar Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

(Received 23 July 2020; accepted 13 October 2020; published 4 November 2020)

We explore the role of stochasticity and noise in the statistical outcomes of commonly studied nonulation

Also available at: ottinoloffler.com

イロト イポト イヨト イヨト

Different Kinds of Noise

Tails	y small	y intermediate	y large
Seascape	$\exp\left[1/y ight]$	$y^{-\eta}$	$\exp\left[-y ight]$
Demographic	$y^{-\eta}$	$\exp[-y]$	$\exp\left[-y^2\right]$
Mixed	$y^{-\eta}$	$(y+r)^{-\gamma}$	$\exp\left[-y\right]$

ヘロア 人間 アメヨア 人口 ア

æ