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Population Growth
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Why Are There So Many Population Models?

Figure: Ciorut, a (2016)
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Richards’ Equation

The Richards’ Equation generalizes the logistic equation’s
second-order term, so

∂ty = µy − ay α .

This is commonly used in forestry and epidemics, but the value of
α isn’t always motivated.
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Where Does It Come From?

Previous explainations have been to...

Do a detailed manipulation of SIR, or

Assume a fractal spatial struture,

neither of which are particularly general.
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How about a Spatial Population Model?

The Fisher Equation

The Mean-Field Fisher Equation is given by

∂ty = µy − ay2 + D(ȳ − y),

where

µ sets growth rate,

a sets saturation population,

D sets diffusion rate, and

ȳ is the spatial average.
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A Mean-Field Model
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Fitness is Time Dependent

Figure: Merrell (1994)
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Randomness in Fitness is Seascape Noise

We respresent seascape noise by treating the fitness parameter µ
as noisy. So,

µ→ µ+ ση,

where η is a stochastic term with unit variance and zero mean.
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Seascape Noise

The Mean-Field Seascape Fisher Equation

The Fisher Equation with seascape noise is written as

∂ty = µy − ay2 + D(ȳ − y) + σyη ,

where yη represents randomness in fitness and enviroment
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Seascape Noise

The Mean-Field Seascape Fisher Equation

The Fisher Equation with seascape noise is written as

∂ty = µy − ay2 + D(ȳ − y) + σyη ,

where yη represents randomness in fitness and enviroment

This has a known steady-state solution!
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ρ̂(y , ȳ) = e−ȳ/yy−γe−y
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How Do We Make The Stationary Solution into
Dynamics?
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Dynamics?

∂ty = µy − ay2 + D(ȳ − y) + σyη

Simultaneous growth and exploration is difficult to analyze...
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Just Split Them!

Explore, then grow, then explore, then grow, and so on, and
so on....
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Seasonal Growth Model
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Explore, Grow, Repeat...

Exploratory Phase Dynamics

∂ty = D(ȳ − y) + σyη

=⇒ Diffusion with seascape noise.

Growth Phase Dynamics

∂tyi = µyi − ayi
2

=⇒ Logistic growth
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Problem With Exploring: No Upper Cutoff
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Time is Finite, so Simplify
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Time is Finite, so Simplify

Given this, we expect

〈y2〉 ∝ 〈y〉1+2D/σ2
,

leading to a spatially dependant power law1.

1So long as 2D < σ2
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Logistic Growth

The growth phase is deterministic, so each node goes like

yi (t) =
µyie

µt

ayi (eµt − 1) + µ
.
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Short Growth Phase

If the timescale of growth ∆t is small, then we can average over
the exporation steady state and Taylor expand:

〈y(t + ∆t)〉 = (1 + µ∆t)〈y(t)〉 − a〈y2(t)〉∆t.
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Short Growth Phase

If the upper cutoff Λ in the exporatory phase is sufficiently large
compared to its mean, then

〈y(t) + ∆t〉 − 〈y(t)〉
∆t

= µ〈y(t)〉−ã(Λ)〈y(t)〉γ+O
(

(〈y(t)〉/Λ)2D/σ2
)
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Combined Dynamics

Combining the two phases leads to an averaged dynamics of

∂t〈y〉 = µ̃〈y〉 − ã〈y〉γ ,

where µ̃ and ã depend on the time spent in each phase.
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An Origin of Richards Growth

1 Diffusion under seascape noise produces power law
distributions in space.

2 Under logistic growth, this power law shows up in the
dynamics of the averages.
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Mean Field
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Shows up for 2D too
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Universality

Because the derivation is insentivie to perturbation in the
growth phase, we get Universality that other approaches lack.
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Final Summary

Seascape Noise + Spatial Diffusion

⇓

Anomalous, Nonuniversal Power Laws

⇓

Richards’ Equation!
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Questions?

Also available at: ottinoloffler.com
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