Extinction Transitions in a Seascape Population Model

Bertrand Ottino-Löffler & Mehran Kardar

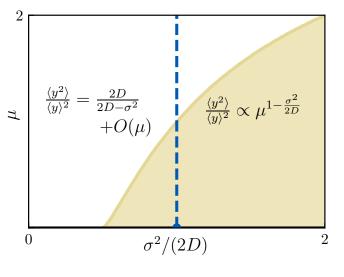
MIT

06/05/20

The Fisher Equation

$$\dot{y} = \mu y - ay^2 + D(\bar{y} - y)$$

- \blacksquare μ sets growth rate
- *a* sets saturation population.
- $D(\bar{y} y)$ is mean-field diffusion.


▲御▶ ▲ 臣▶ ▲ 臣▶

$$\dot{y} = \mu y - ay^2 + D(\bar{y} - y) + \sigma y \eta$$

- $y\eta$ is seascape noise
- Represents randomness in fitness values

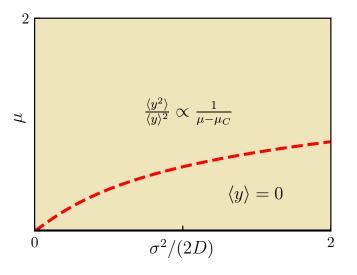
・四ト・モート・モート

Large fluctuations near extinction

Figure: Yellow shows when the ratio is > 2.

医外球菌科 一

æ


Implementing noise

$$\dot{y} = \mu y - ay^2 + D(\bar{y} - y) + \sigma \sqrt{y}\eta$$

- $\sqrt{y}\eta$ is demographic noise
- Representation of finite-size errors

・四ト・モート・モート

Large fluctuations guaranteed

Figure: Yellow shows when the ratio is > 2.

æ

Seascape noise alone is a special case.