A Richards-Like Stochastic Population Growth Model

Bertrand Ottino-Löffler & Mehran Kardar

MIT

09/20/19

Population Growth With Randomness¹

¹Images: S. Chu (2019), K. S. Korolev (2010), Hallatschek (2007).

General Population Growth Model

$$\dot{y}(\mathbf{x},t) = \mu y - ay^{lpha} + D \nabla^2 y + \sigma y \eta(\mathbf{x},t)$$

- $\dot{y} = \mu y ay^{\alpha}$ is the Richards equation, as used in generalized logistic growth models.
- $D\nabla^2 y$ adds spatial diffusion.
- $\sigma y \eta(\mathbf{x}, t)$ introduces randomness proportional to population.

$\mu \neq 0$ is Simple

Figure: (a) $\mu > 0$, (b) $\mu < 0$.

æ

Behavior at $\mu = 0$ Still Complicated

- What is the final stationary distribution for log(y) across space? Across realizations?
- How reasonable is it to perturb off of the noise-free (σ = 0) case?
- Does the roughness produced under Richards-like nonlinearity fall under KPZ universality?