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Population Growth With Randomness1

1Images: S. Chu (2019), K. S. Korolev (2010), Hallatschek (2007).
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General Population Growth Model

ẏ(x, t) = µy − ayα + D∇2y + σyη(x, t)

ẏ = µy − ayα is the Richards equation, as used in generalized
logistic growth models.

D∇2y adds spatial diffusion.

σyη(x, t) introduces randomness proportional to population.
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µ 6= 0 is Simple
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Figure: (a) µ > 0, (b) µ < 0.
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Behavior at µ = 0 Still Complicated
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What is the final stationary
distribution for log(y) across
space? Across realizations?

How reasonable is it to
perturb off of the noise-free
(σ = 0) case?

Does the roughness
produced under Richards-like
nonlinearity fall under KPZ
universality?

BJOL


