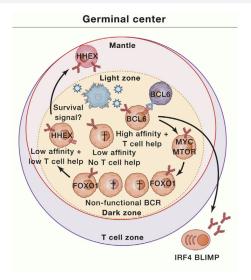
Evaluating the Logic of Selection in Germinal Centers

Bertrand Ottino-Löffler & Gabriel Victora


Rockefeller University

March 10, 2023

What is a Germinal Center?

GC: Small Scale Evolutionary Optimization Alg.

Figure: Young (2021)

Question: How *Does* the Selection Take Place?

▲日▼▲□▼▲田▼▲田▼ 田 ろくの

Traditional population growth model:

$$\frac{dn}{dt} = (\text{birth rate} - \text{death rate})n$$

▲御▶ ▲理▶ ▲理▶

Normal models: Single Parameter

by Edelstein-Resnet (1900).

1.1 Continuous Growth Models

Single species models are of relevance to laboratory studies in particular but, in the real world, can reflect a telescoping of effects which influence the population dynamics. Let N(t) be the population of the species at time t, then the rate of change

$$\frac{dN}{dt} = \text{births} - \text{deaths} + \text{migration} , \qquad (1.1)$$

| 4 同 ト 4 ヨ ト 4 ヨ ト

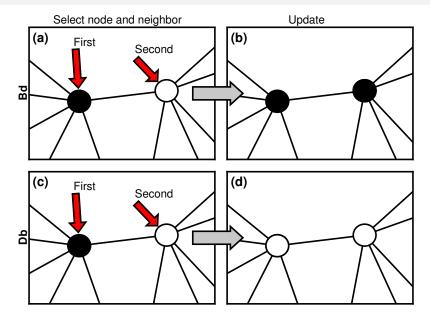
is a conservation equation for the population. The form of the various terms on the right hand side of (1.1) necessitates modelling the situation that we are concerned with. The simplest model has no migration and the birth and death terms are proportional to N. That is

$$\frac{dN}{dt} = bN - dN \quad \Rightarrow \quad N(t) = N_0 e^{(b-d)t}$$

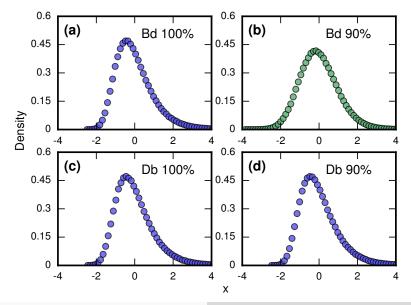
where b, d are positive constants and the initial population $N(0) = N_0$. Thus if b > d the population grows exponentially while if b < d it dies out. This

Figure: Murray (1993)

Birth and Death Are Not The Same


▲ロト▲御ト▲臣ト▲臣ト 臣 のQの

Definition


The Moran Birth-death (Bd) model consists of three steps:

- 1. With probability proportional to fitness (r), randomly select a cell to give birth.
- 2. Uniformly randomly select a neighbor of the first cell to die.
- 3. The dying cell takes on the type of the birthing cell.

Moran Model

Fixation Times Distinguish Birth and Death

BJOL

Intuition:

- Birth selection slows down near total fixation
- Death selection starts slow, but fixates fast,
- Truncation skip slow regime for Bd, changing the qualitative shape.

Can we find a convenient signature of death selection in Germinal Centers?

*ロト *部ト * ヨト * ヨト - ヨ

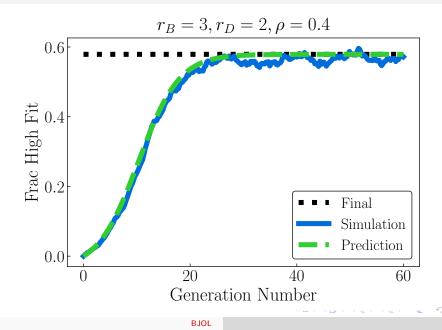
Only two affinities, High (H) and Low (L) for maximum disparity.

h = fraction of population which is high affinity.

GC has three potential selection mechanisms:

- Birth Selection,
- Death Selection,
- Mutational Selection (will be explained later).

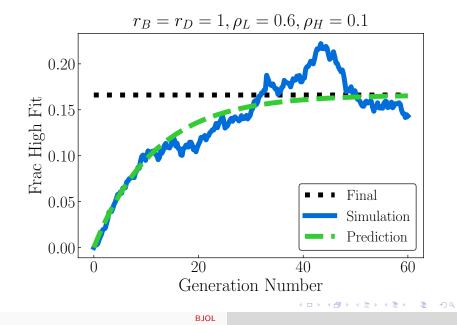
・ 戸 ・ ・ ヨ ・ ・ ヨ ・


If a cell divides this timestep, then:

- The dividing cell is High affinity with prob $\propto r_B h$
- \blacksquare The dividing cell is Low affinity with prob $\propto 1-h$

If a cell dies this timestep, then:

- \blacksquare The dying cell is High affinity with prob $\propto h/r_D$
- \blacksquare The dying cell is Low affinity with prob $\propto 1-h$


Typical Selection Curve

- GCs occasionally have Clonal Bursts, where one cell line repeatedly divides.
- When bursting, the line has a *notably lower* mutation rate than normal.
- This opens the possibility of a *tunable mutation rate*.

・ 同 ト ・ ヨ ト ・ ヨ ト

Pure Mutational Selection

Skew Hypothesis

▲□▶▲□▶▲□▶▲□▶ □ つんの

Skew Hypothesis

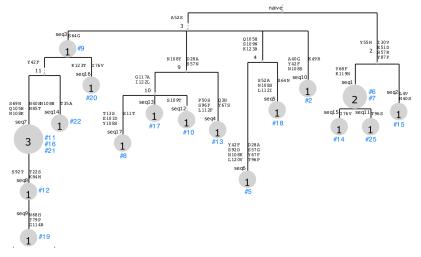
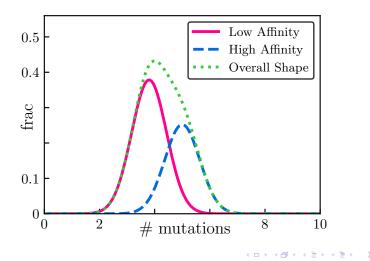
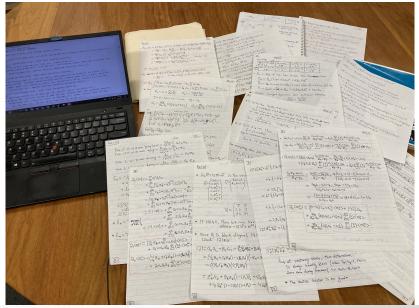
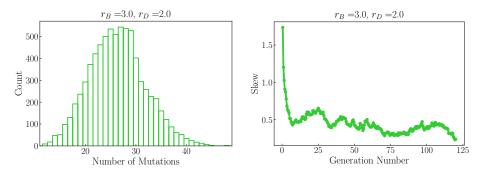



Figure: Tatsuya (2022)


æ

Skew Hypothesis

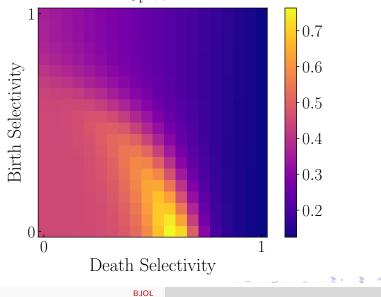
Since L and H have different levels of mutational activity, would they seperate?


NOPE

BJOL

Calculation Outline: The Truth

$$\mathsf{Skew} = \mathbb{O}(t^{-1/2}) o 0$$



< ロ > < 回 > < 回 > < 回 > < 回 >

э

Dynamical Footprint of Selection

 ∂_t Var

Ancestry Hypothesis

Ancestry Hypothesis

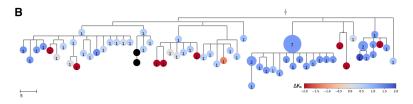
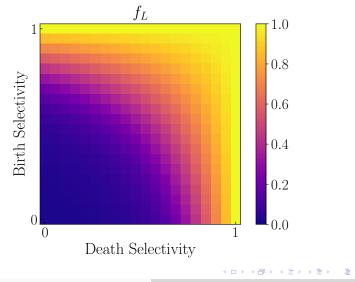


Figure: Tatsuya (2022)

Image: A matched block

≣⇒


$$f_{H} = \frac{\text{number of H cells with H ancestors}}{\text{number of H cells}}$$
$$f_{L} = \frac{\text{number of L cells with H ancestors}}{\text{number of L cells}}$$

< ロ > < 部 > < き > < き > <</p>

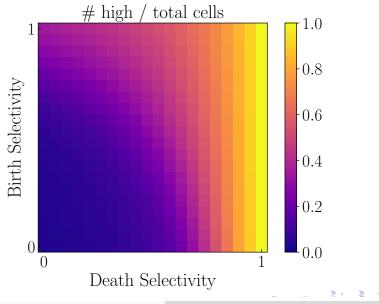
æ

Ancestry Hypothesis: False

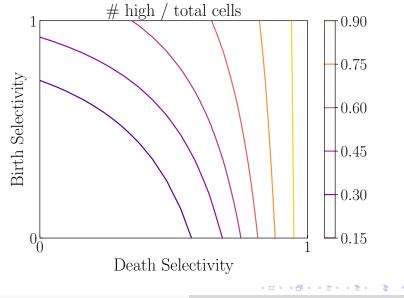
Notably, f_H and f_L only depend on the combined $r_B r_D$.

Is there anything static that distiguishes r_D and r_B ?

・ロット語・ ・聞 ・ ・ 聞 ・ うらる


Overall selectivity

Fraction of cells which are High affinity =
$$\frac{1}{1 + r_B g(r_B r_D)}$$


▲日 ▶ ▲圖 ▶ ▲ 圖 ▶ ▲ 圖 ▶

æ

Overall selectivity

Overall selectivity

Static Signals of Selection Scheme?

Mutation Distribution Shape	Nope
Preferential Ancestry	Not Really
Overall Selection Strength	Yep
Extinction and Exit Times	Yep

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶

Thanks to Gabriel Victora, Tatsuya Araki, & Arup Chakraborty for the comments.

▲御▶ ▲屋▶ ▲屋▶

э

Selected References & Image Sources

Tatsuya Araki, Replaying Life's Tape With Intraclonal Germinal Center Evolution, Rockefeller University (2022).
Gordon L. Ada and Sir Gustav Nossal, The Clonal-Selection Theory, Scientific American (1987).
Bertrand Ottino-Loffler, Jacob Scott, and Steven Strogatz, Evolutionary Dynamics of Incubation Periods, eLife (2017).
Alexander Gitlin, Ziv Shulman, and Michel Nussenzweig, Clonal Selection in the Germinal Centere by Regulated Proliferation and Hypermutation, Nature (2014).
James Murray, Mathematica Biology, Springer (1993).
Clara Young and Robert Brink, The Unique Biology of Germinal Center B Cells, Immunity (2021).

Talk available at: ottinoloffler.com

- 4 同 1 4 三 1 4 三 1