Evaluating the Logic of Selection in Germinal Centers

Bertrand Ottino-Loffler & Gabriel Victora

Rockefeller University

May 15, 2023

What is a Germinal Center?

GC: Keystone of Adaptive Immunity

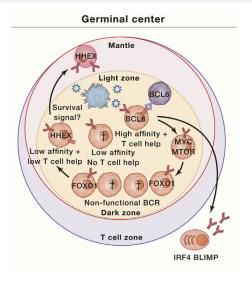


Figure: Young (2021)

GC: Small Scale Evolutionary Optimization Alg.

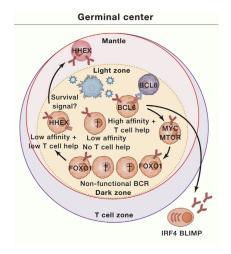


Figure: Young (2021)

- Body gets hit by pathogen.
- Anitgen gets presented to B-Cells in Germinal Center.
- Speedy evolution for Affinity (binding ability).
- Get high quality antibodies (yay!)

Question: How Does Selection Take Place?

Standard Models: Single Parameter

Traditional population growth model:

$$\frac{dN}{dt} = (birth rate - death rate)N$$

Normal models: Single Parameter

by Edeistein-Vesuer (1900).

1.1 Continuous Growth Models

Single species models are of relevance to laboratory studies in particular but, in the real world, can reflect a telescoping of effects which influence the population dynamics. Let N(t) be the population of the species at time t, then the rate of change

$$\frac{dN}{dt} = \text{births} - \text{deaths} + \text{migration} , \qquad (1.1)$$

is a conservation equation for the population. The form of the various terms on the right hand side of (1.1) necessitates modelling the situation that we are concerned with. The simplest model has no migration and the birth and death terms are proportional to N. That is

$$\frac{dN}{dt} = bN - dN \quad \Rightarrow \quad N(t) = N_0 e^{(b-d)t}$$

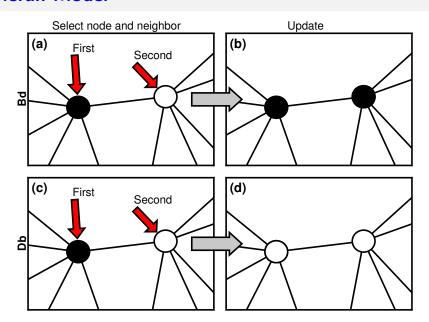
where b, d are positive constants and the initial population $N(0) = \bar{N}_0$. Thus if b > d the population grows exponentially while if b < d it dies out. This

Figure: Murray (1993)

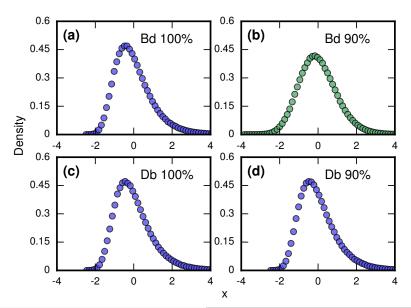
Birth and Death Are Not The Same

Birth Selection: High fitness = divide faster

Death Selection: High fitness = die slower


Previous Work: The Moran Model

Definition


The Moran Birth-death (Bd) model consists of three steps:

- 1. With probability proportional to fitness (r), randomly select a cell to give birth.
- 2. Uniformly randomly select a neighbor of the first cell to die.
- 3. The dying cell takes on the type of the birthing cell.

Moran Model

Fixation Times Distinguish Birth and Death

Birth and Death Are Not The Same

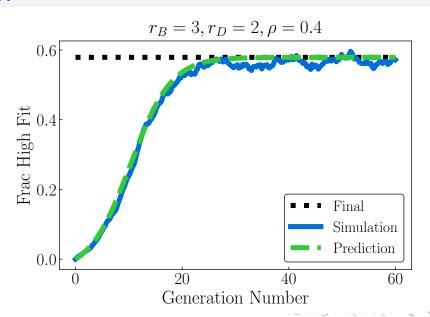
Intuition:

- Birth Selection slows down near total fixation.
- Death Selection starts slow, but fixates fast.
- Truncation skip slow regime for Birth Selection, changing the qualitative shape.

The Goal

Can we find a convenient signature of Death Selection in Germinal Centers?

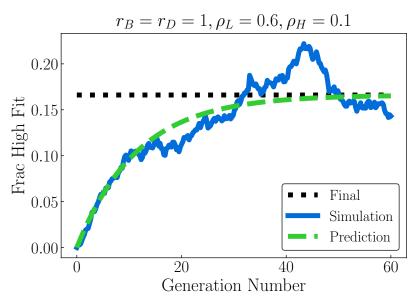
A Model for Affinity Selection


Only two affinities, High (H) and Low (L) for maximum disparity.

h = fraction of population which is high affinity.

GC has three potential selection mechanisms:

- Birth Selection (*r_B*),
- Death Selection (r_D) ,
- Mutational Selection (??).


Typical Selection Curve

Mutational Selection?

- Mutations in GC occur 10⁶ times more often than default.
- GCs occasionally have Clonal Bursts, where one cell line repeatedly divides.
- When bursting, the line has a **notably lower** mutation rate than normal for the GC.
- This opens the possibility of a tunable mutation rate.

Pure Mutational Selection

Average Selection

Let $\ell = 1 - h$, then the average selection dynamics are given by:

$$\frac{dh}{dt} = \frac{2\rho_L \eta_L}{1 + n/N} \frac{\ell}{r_B h + \ell} + \frac{1 - 2\rho_H \eta_H}{1 + n/N} \frac{r_B h}{r_B h + \ell} - \frac{n/N}{1 + n/N} \frac{h/r_D}{h/r_D + \ell}$$

Skew Hypothesis

Skew Hypothesis

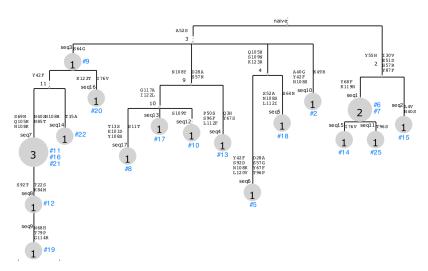
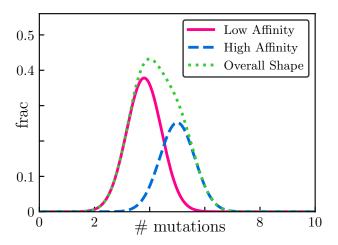



Figure: Tatsuya (2022)

Skew Hypothesis

Since L and H have different levels of mutational activity, would they seperate?

Calculation Outline: Mutation Dynamics

$$h_m = rac{ ext{number of H cells with m mutations}}{ ext{number of cells}}$$

$$\ell_m = \frac{\text{number of L cells with m mutations}}{\text{number of cells}}$$

$$\langle m^k \rangle = \text{k'th moment of mutation distribution}$$

$$= \sum_m (h_m + \ell_m) m^k$$

Calculation Outline: Linear Structure

$$\partial_t \langle m_H^k \rangle = A_H \langle m_H^k \rangle + B_H \sum_{w=0}^k \binom{k}{w} \langle m_H^k \rangle + C_H \sum_{w=0}^k \binom{k}{w} \langle m_L^k \rangle$$

$$\partial_t \langle m_L^k \rangle = A_L \langle m_L^k \rangle + B_L \sum_{w=0}^k \binom{k}{w} \langle m_H^k \rangle + C_L \sum_{w=0}^k \binom{k}{w} \langle m_L^k \rangle$$

Calculation Outline: Problem

$$\partial_t \vec{m} = Q\vec{m} + \vec{v}$$

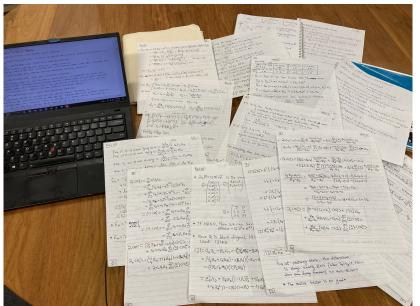
Truncating to the third moment gives:

$$Q = \begin{pmatrix} J & 0 & 0 \\ 2R & J & 0 \\ 3R & 3R & J \end{pmatrix}$$

Calculation Outline: Problem

$$\partial_t \vec{m} = Q \vec{m} + \vec{v}$$

$$\downarrow \downarrow \ \ \vec{m}(t) = -Q^{-1} \vec{v} + e^{Qt} \left(Q^{-1} \vec{v} + \vec{m}(0) \right)$$


Calculation Outline: Back of Envelope

$$\mathsf{Skew} = \frac{\mathsf{Sk}}{\mathsf{Var}^{3/2}}$$

$$\mathsf{Sk} pprox \langle m^3
angle = \mathbb{O}(t^3)$$
 $\mathsf{Var} pprox \langle m^2
angle = \mathbb{O}(t^2)$

Therefore Skew → Constant

NOPE

BJOL

Calculation Outline: Problem

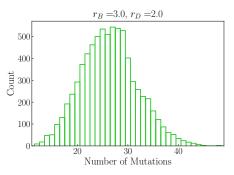
$$\partial_t \vec{m} = Q \vec{m} + \vec{v}$$

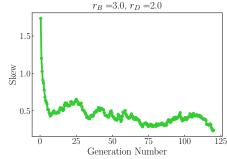
Truncating to the third moment gives:

$$\boxed{|Q| = |J|^3 = \left[Z_D Z_B \left(1/r_D - r_B\right) \partial_t h\right]^3 \to 0}$$

So basic methods are poor in steady-state.

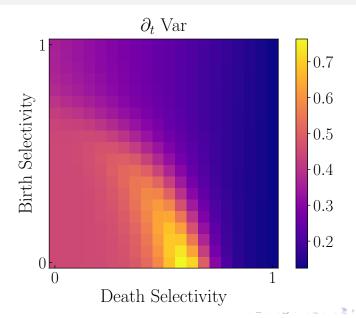
Calculation Outline: Using Iterative Methods


$$\mathsf{Skew} = \frac{\mathsf{Sk}}{\mathsf{Var}^{3/2}}$$


where

$$Sk = N_3 - 3N_2N_1 + 2N_1^3 = \mathbb{O}(t)$$

 $Var = N_2 - 2N_1^2 = \mathbb{O}(t)$

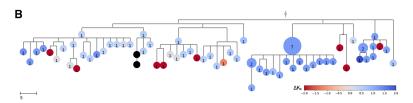

Calculation Outline: The Truth

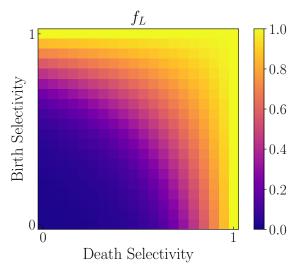
$$\boxed{\mathsf{Skew} = \mathbb{O}(t^{-1/2}) \to 0}$$

Dynamical Footprint of Selection

Ancestry Hypothesis

Ancestry Hypothesis



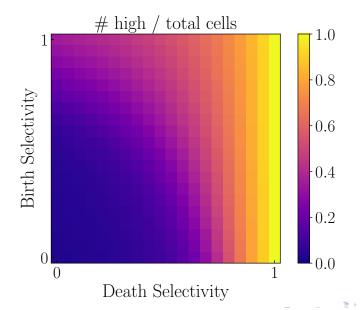

Figure: Tatsuya (2022)

Ancestry Hypothesis

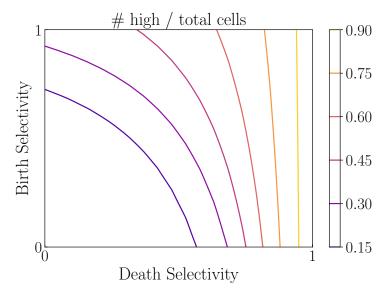
$$f_H = rac{ ext{number of H cells with H ancestors}}{ ext{number of H cells}}$$
 $f_L = rac{ ext{number of L cells with H ancestors}}{ ext{number of L cells}}$

Ancestry Hypothesis: False

Notably, f_H and f_L **only** depend on the combined $r_B r_D$.



Is there anything static that distiguishes r_D and r_B ?


Overall selectivity

Fraction of cells which are High affinity
$$=\frac{1}{1+r_Bg(r_Br_D)}$$

Overall selectivity

Overall selectivity

Static Signals of Selection Scheme?

Mutation Distribution Shape	Nope
Preferential Ancestry	Not Really
Overall Selection Strength	Yep
Extinction and Exit Times	Yep

Thanks to Gabriel Victora, Tatsuya Araki, & Arup Chakraborty for the comments.

Selected References & Image Sources

Tatsuya Araki, Replaying Life's Tape With Intraclonal Germinal Center Evolution, Rockefeller University (2022).

Gordon L. Ada and Sir Gustav Nossal, The Clonal-Selection Theory, Scientific American (1987).

Bertrand Ottino-Loffler, Jacob Scott, and Steven Strogatz, Evolutionary Dynamics of Incubation Periods, eLife (2017).

Alexander Gitlin, Ziv Shulman, and Michel Nussenzweig, Clonal Selection in the Germinal Centere by Regulated Proliferation and Hypermutation, Nature (2014).

James Murray, Mathematica Biology, Springer (1993).

Clara Young and Robert Brink, The Unique Biology of Germinal Center B Cells, Immunity (2021).

Talk available at: ottinoloffler.com