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This talk

Personal: people.cam.cornell.edu/∼bjo34/
Twitter: @OttinoLoffler
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The Incubation Period

Definition

The Incubation Period of a disease is defined to be the time
between first exposure to a contagion and observation of first
symptoms.
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The Incubation Period

Then incubation period of a disease is important for...

... individual diagnosis.

... deciding quarantine policy.

... predicting secondary outbreaks of epidemics.
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The Incubation Period
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The Incubation Period
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Figure: Frequency distributions of incubation periods for two diseases.
Data redrawn from historic examples. (a) Data from an outbreak of
food-borne streptococcal sore throat, reported in 1950 (Sartwell, 1950).
Time is measured in units of days. (b) Data from a 1949 study of
bladder tumors among workers following occupational exposure to a
carcinogen in a dye plant (Goldblatt, 1949).
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Sartwell’s Law (1966)

Sartwell’s Law

Incubation periods for diseases tend to be distributed as
lognormals; more generally, they will be right-skewed.
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Explanations?

Traditionally: Heterogeneity of ...

... The contagion’s fitness.

... The host’s immunosensitivity.

... The inoculum of contagion.

Q: Can Sartwell’s Law arise from intrinsic chance alone?
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An Evolutionary Graph Theory Approach

Many illnesses consist of spreading on a within-host network

The Illness ... ... Takes over the ... ... Which is a ...

Typhoid well-mixed gut microbiome Complete graph

Influenza uncompromised tracheal cells 2D lattice

Leukemia healthy bone marrow cells 3D lattice
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Evolutionary Graph Theory

We emulate the Incubation Period of a disease via the The
Takeover/Fixation Time of an evolutionary takeover process
on a network.

Definition

The Fixation (or Takeover) Time of a network evolutionary
process is the time between the appearance of a single invader and
100% of the resident nodes being replaced by invaders. (The initial
population of invaders and the final takeover threshold can both be
adjusted, if desired.)
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Evolutionary Graph Theory

Definition

The Moran Birth-death (Bd) model consists of three steps:
1. With probability proportional to fitness (r), randomly select a
node on the network to give birth.
2. Uniformly randomly select a neighbor of the first node to die.
3. The dying node takes on the type of the birthing node.
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The Moran Model
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A Path To Takeover: r = inf
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Complete Graph: Summary
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Complete Graph: Simplified

Infinite r Bd on a complete graph (rephrased)

Each time step, a random node from a set of N − 1 is selected
uniformly with replacement. If we pick a healthy node, we relabel
it and toss it back, and repeat until there are no healthy nodes left.
What is the distribution of times T until all nodes are relabeled?
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The Coupon Collector’s Problem

The Coupon Collector’s Problem

Each day, a kid gets one trading card, uniformly at random. Given
that there are N distinct cards, what is the distribution of times T
required to form a complete set?
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The Complete Graph

The mean of the collection time is µ ≈ N log(N) + Nγ. Then we
find

T − µ
N

d−→ Gumbel(−γ, 1). (1)

Here γ ≈ 0.5772 is the Euler-Mascheroni constant,
d−→ denotes

convergence in distribution, and a Gumbel(α, β) random variable
has a density given by

h(x) = β−1e−(x−α)/β exp
(
−e−(x−α)/β

)
. (2)
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The Star Graph is Similar
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Proposition 1: Agreement of Geometric and Exponential
Variables

Proposition
Suppose we have a family of sequences (pm)Mm=1, with 0 ≤ pm ≤ 1 for all m and M, where pm may depend on
M. Define Geo(p) to be a geometric random variable with distribution

P(Geo(p) = k) = (1− p)k−1p

for k = 1, 2, . . .. Further, let E(p) be an exponential random variable with distribution

P(E(p) = x)dx = pe−pxdx

for x ≥ 0. Given some function L := L(M) such that limM→∞ L =∞ and limM→∞
∑M

m=1
1

pmL2 = 0, and

given TG :=
∑M

m=1 X (pm), TE :=
∑M

m=1 E(pm), and µ :=
∑M

m=1 1/pm , then

TG − µ
L

∼
TE − µ

L
.

The symbol “∼” means the ratio of characteristic functions goes to 1 as N gets large. That is, the random

variables on both sides converge to each other in distribution as M gets large.

BJOL Incubation Periods



Proposition 1 (Short Version)

Proposition

It’s usually okay to replace sums of geometric random variables
with a similar sum of exponential random variables.
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Complete Graph and Star Graph

For the complete graph, we have

T − N(log(N) + γ)

N
d−→ Gumbel(−γ, 1). (3)

By a similar (but more complicated) trajectory, we have that the
corresponding fixation time for a star network with N spokes is

T − N2(log(N) + γ − 1)

N2

d−→ Gumbel(−γ, 1). (4)
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Complete Graph and Star Graph
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Results for Lattices
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Lattices: A Problem

The derivation for the complete and star graphs relied on pm
(the probability of adding a new invader, given there are
currently m invaders).

However, pm as a concept isn’t well defined for lattices
and other more complicated networks. The probability of a
new invader being added depends on the configuration of the
existing invaders, not just their number.
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Lattices: Geometric Simplification
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Lattices: Geometric Simplification 2

In many cases, it is possible to make an analogy to first-passage
percolation. So these clusters are described by shape theorems,
stating that these have a simple convex (but non-ball) limit shapes.
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Lattices: Surface Area to Volume

In a d dimensional lattice, a simple convex shape of volume V
has a surface area proportional to V η, where η = 1− 1/d .

Moreover, the probability of adding a new invader is
proportional to the probability of selecting a node on the
boundary of the cluster of invader nodes. So:

pm ∝
1

m
· Surface area of of the invader cluster

∝qm :=
min(m,N −m)η

m
.

Therefore,

T ≈
N−1∑
m=1

Geo(qm).
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Lattices: Low Dimensions First
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Proposition 2: A Condition for Normality

Proposition

Let T =
∑M

m=1 E(pm), define σ2 = Var(T ) =
∑M

m p−2
m , and let

limM→∞ pmσ =∞. If

lim
M→∞

M∑
m=1

exp (−εpmσ) = 0, (5)

then
T − µ
σ

d−→ Normal(0, 1). (6)
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Lattices: d = 1 and d = 2
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Lattices: No Closed-Form for High Dimensions
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Lattices: Skew Results

Lemma

If the independent random variables Xi have variances σ2
i and

skews κi , then their sum has a skew of

Skew

(∑
i

Xi

)
=

∑
i κiσ

3
i(∑

i σ
2
i

)3/2
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Lattice: d ≥ 3.

Theorem

Letting η = 1− 1/d, the asymptotic skew of the takeover times for
a d > 2 dimensional lattice is given by

Skew(d) =
2ζ(3η)

ζ(2η)3/2
, where ζ(x) =

∞∑
n=1

1

nx
.
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Summary: Infinite r
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Summary: Complete Graph, r = 1
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Summary: Complete Graph, r = 1

By symmetry, p+
m = p−m = m(N−m)

N(N−1) . Therefore,

Xn := The population level after n changes =
n∑

i=1

xi ,

where x ∈ {−1,+1}, each with probability 1/2.
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Summary: Complete Graph, r = 1

Fact: We can only record an incubation period if someone
actually gets sick.

Therefore, we need to condition on the population Xn hitting
N before ever hitting 0.
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Summary: Complete Graph, r = 1

Proposition

(Via optional stopping) An unbiased random walk which starts at 1
and hits N before hitting 0 has a high level of skew (≈ 1.807).
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Summary: Complete Graph, r = 1

Proposition

Conditioning on the success of the invaders induces a high level of
skew.
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Summary: r = 1
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Summary: Realism?

Sartwell measured Dispersion Factors, the standard
deviations of the logs of the data, across many diseases.

He measured dispersion factors between 1.1 and 1.5 for
real-world diseases.

For our high fitness simulations, we measured factors between
1.1 and 1.4.

For neutrally fit invaders, we measured factors between 1.6
and 1.7.
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Summary: Heterogeneity
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Figure: Complete graph with r = 10 under various forms of heterogeneity. (a) heterogeneity in invaders. (b)

Heterogeneity of host sensitivity. (c) Heterogeneity of initial dosage. (d) Heterogeneity of all three.
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Summary: Main Points

Important Facts:

When the invader fitness is high, dynamics are dominated by
The Coupon Collector’s Problem, leading to right skewed
distributions.

When invader fitness is low, dynamics are dominated by a
Conditioned Random Walk, leading to right skewed
distributions.

There is a Critical Dimension in the infinite fitness case,
with higher dimensional topologies leading to more skewed
distributions.

While population-level heterogeneity can be tuned to cause
right-skewed distributions, Such Heterogeneity Isn’t
Necessary for these distributions, and just accentuate the
fundamental mechanisms we already observe.
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Summary: Main Points

And Most Importantly...

While lognormal-like distributions can be justified in any
number of ways, Evolutionary Network Dynamics is the
only phenomenon common to the diverse range of diseases
shown to obey Sartwell’s law.
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Questions?
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Figure: (a) r =∞. (b) r = 1.

Personal: people.cam.cornell.edu/∼bjo34/
Twitter: @OttinoLoffler
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Appendix: Additional info
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Summary: Truncation

-4 -2 0 2 4
0

0.15

0.3

0.45

0.6
(a) Bd 100%

-4 -2 0 2 4
0

0.15

0.3

0.45

0.6
(b) Bd 90%

-4 -2 0 2 4
0

0.15

0.3

0.45

0.6
(c) Db 100%

-4 -2 0 2 4
0

0.15

0.3

0.45

0.6
(d) Db 90%

x

D
en

si
ty

BJOL Incubation Periods



Summary: Complex Networks
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Figure: Top row: r =∞. Bottom row: r = 1.
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Complete Graph: Derivation Sketch, r =∞

BJOL Incubation Periods



Complete Graph: Part 1

Define pm := The probability of adding a new invader, given there
are currently m invaders.

pm := P(Choose an invader) · P(Neighbor is resident)

=
mr

mr + (N −m)
· N −m

N − 1
r→∞−−−→ N −m

N − 1
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Complete Graph: Part 2

Probability of invader population m→ m + 1 taking t steps =
(1− pm)t−1pm.

P(Geo(pm) = t) = (1− pm)t−1pm; t ≥ 1
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Complete Graph: Part 3

T = The total fixation time

=
N−1∑
m=1

Geo (pm) =
N−1∑
m=1

Geo

(
N −m

N − 1

)
.

This is a simple sum of Geometric random variables with increasing
means.
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Summary: Complete Graph, r = 1

The important stopping time is the first hitting time of 0 or N, so
use

S = min{S0,SN}, where Sm = min{n|Xn = m}.

To find the appropriate moments of the conditioned fixation times,
set up the moments

µi := E (S i |XS = N).
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Summary: Complete Graph, r = 1

By using martingales and the optional stopping theorem, we get

µ1 =
N2 − 1

3

µ2 =
7N4 − 20N2 + 13

45

µ3 =
31N6 − 147N4 + 189N2 − 73

315

So in the large N limit, the skew of the conditioned random walk
becomes

Skew =
µ3 − 3µ1µ2 + 2µ2

1

(µ2 − µ2
1)3/2

≈ 1.807� 0.
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