The Evolutionary Dynamics of Incubation Periods

Bertrand Ottino-Löffler Steve Strogatz, Jacob Scott

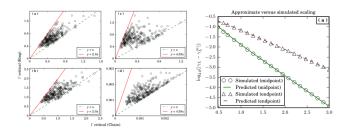
01/12/21

Outline

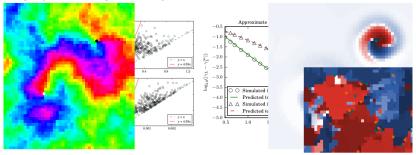
- Personal background
- What are incubation periods? Sartwell's law?
- Introducing the Moran model(s)
- 4 Infinite r, complete graph and star graph
- 5 Lattices, critical dimensions
- 6 Future directions

Previously:

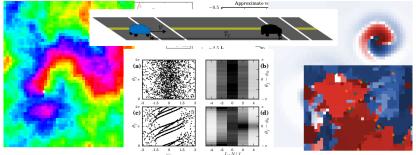
Previously: Asymptotic Analysis!



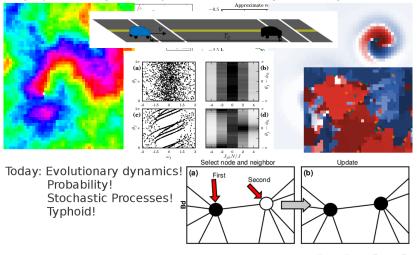
Previously: Asymptotic Analysis! Coupled Oscillators!



Previously: Asymptotic Analysis! Coupled Oscillators! Dynamical Systems!



Previously: Asymptotic Analysis! Coupled Oscillators! Dynamical Systems!



Definition

The **Incubation Period** of a disease is defined to be the time between first exposure to a contagion and observation of first symptoms.

NINETY-THREE PERSONS INFECTED BY A TYPHOID CARRIER AT A PUBLIC DINNER

WILBUR A. SAWYER, M.D.

Director of the Hygienic Laboratory of the California State Board of Health

BERKELEY, CAL.

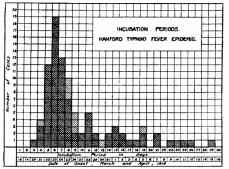


Chart of the cases in the Hanford typhoid fever epidemic, showing incubation periods and dates of onset. The heavily shaded areas represent definite cases of typhoid fever. The lightly shaded areas represent the doubtful cases.

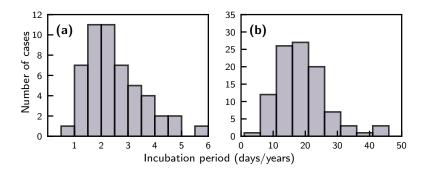


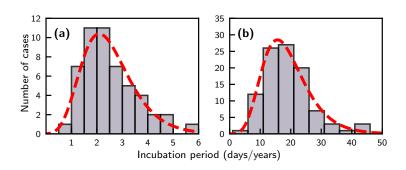
Figure: (a) Food-borne streptococcal sore throat (Sartwell 1950).

(b) Bladder tumors in a dye plant (Goldblatt 1949).

Sartwell's Law (1966)

Sartwell's Law

Incubation periods for diseases tend to be distributed as lognormals; more generally, they will be right-skewed.



Still Used, 50+ Years Later

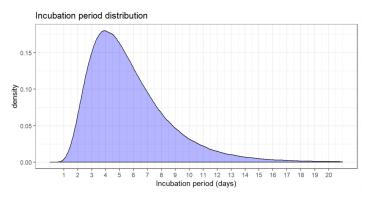


Figure 3 Probability density function of the pooled lognormal distribution of reported incubation period with mu=1.63 and sigma=0.50.

Figure: Lognormal fit for COVID-19 (McAloon 2020).

What Do They Have In Common?

Evolutionary Graph Theory Is A Common Factor

Evolutionary Graph Theory Is A Common Factor

The Illness	Takes over the	Which is a
Typhoid	well-mixed gut microbiome	Complete graph
Leukemia	healthy bone marrow cells	3D lattice
Influenza	uncompromised tracheal cells	2D lattice

Viruses?

Viruses 2018, 10(11), 627; https://doi.org/10.3390/v10110627

Open Access

Review

Causes and Consequences of Spatial Within-Host Viral Spread

by Molly E. Gallagher ¹, Christopher B. Brooke ^{2,3}, Ruian Ke ⁴ and Katia Koelle ^{1,*} □

1 Department of Biology Empry University Atlanta CA 20222 USA Virus-Cell Interactions

Influenza A Virus Uses Intercellular Connections To Spread to Neighboring Cells

Kari L. Roberts, Balaji Manicassamy, Robert A. Lamb D. S. Lyles, Editor

- Influenza virus exploits tunnelingnanotubes for cell-to-cell spread
 - Amrita Kumar, Jin Hyang Kim, Priya Ranjan, Maureen G. Metcalfe, Weiping Cao, Margarita Mishina, Shivaprakash Gangappa, Zhu Guo, Edward S. Boyden, Sherif Zaki, Ian York, Adolfo García-Sastre, Michael Shaw & Suryaprakash Sambhara

Evolutionary Graph Theory

 We emulate the Incubation Period of a disease via the The Takeover/Fixation Time of an evolutionary takeover process on a network.

Evolutionary Graph Theory

Definition

The **Fixation (or Takeover) Time** of a network evolutionary process is the time between the appearance of a single invader and 100% of the resident nodes being replaced by invaders.

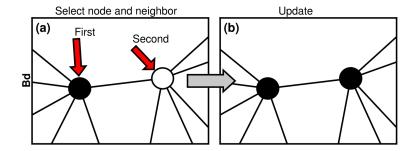
Evolutionary Graph Theory

Definition

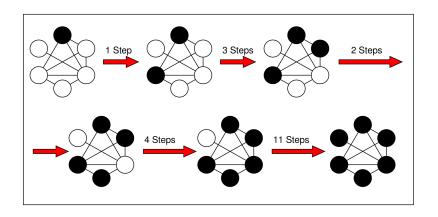
The Moran Birth-death (Bd) model consists of three steps:

- 1. With probability proportional to fitness (r), randomly select a node on the network to give birth.
- 2. Uniformly randomly select a neighbor of the first node to die.
- 3. The dying node takes on the type of the birthing node.

The Moran Model



The Moran Model: Takeover



Complete Graph: $r = \infty$

Complete Graph: $r = \infty$

At every time step:

- 1) Select a random node A from the available mutants.
- 2) Choose random node B from the N-1 neighbors of the first.
- 3) If B is healthy, turn it into a mutant.
- 4) Repeat for T steps until every node is a mutant.

Complete Graph: Simplified

At every time step:

- 1) Select a random node A from the available mutants.
- 1) Choose a random node B from a set of N-1.
- 2) If we haven't seen B before, we label and return it.
- 3) Repeat for T steps until every node is labeled.

The Coupon Collector's Problem

The Coupon Collector's Problem

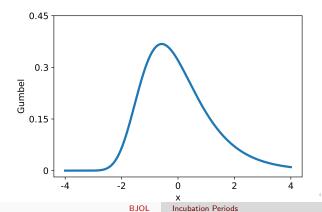
Each day, a kid gets one trading card, uniformly at random. Given that there are N distinct cards, what is the distribution of times T required to form a complete set?

The Complete Graph

Theorem

$$\frac{T - E[T]}{N} \xrightarrow{d} Gumbel(-\gamma, 1),$$

(Where $\gamma =$ the Euler-Mascheroni constant \approx 0.5772.)



Proof Method

- 1) Find the probability p_m of a new invader appearing in the next step.
- 2) Notice the takeover time is a sum of geometric variables, $T_N = \sum_{m=1}^{N-1} \text{Geo}(p_m)$.

Proof Method

Find the characteristic function of the normalized takeover time

$$\Phi(s) := E\left[\exp\left(is\frac{T_{\mathcal{N}} - \mu}{\sigma}\right)\right],$$

and use approximation methods to show that Φ converges to a second characteristic function of known distribution.

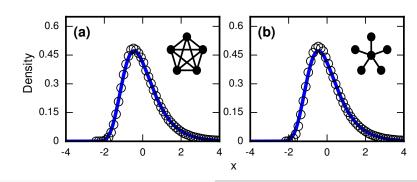
Complete Graph and Star Graph

Complete Graph:

$$\frac{T - N(\log(N) + \gamma)}{N} \xrightarrow{d} \text{Gumbel}(-\gamma, 1). \tag{1}$$

Star Graph:

$$\frac{T - N^2(\log(N) + \gamma - 1)}{N^2} \xrightarrow{d} \text{Gumbel}(-\gamma, 1).$$
 (2)



Lattices

Lattices: A Problem

- Configuration is important!
- It is hard to predict the exact rate of new mutants appearing.

Lattices and Moran

Lattices: Surface Area to Volume

To understand lattices, do the following:

- 1) Make an analogy to first-passage percolation.
- 2) Use surface area to volume scaling.
- 3) Pray.

Lattices: Surface Area to Volume

In general, predict

$$p_m \propto \frac{1}{m} \cdot \text{Surface area of of the invader cluster}$$
 $\propto \frac{\min(m, N-m)^{1-1/d}}{m}.$

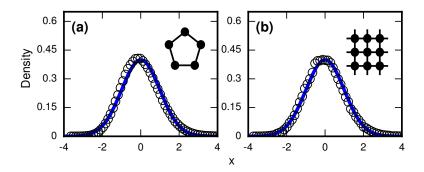
Therefore, the takeover time looks like

$$Tpprox \sum_{m=1}^{N-1} {\sf Geo}\left(rac{{\sf min}(m,N-m)^{1-1/d}}{m}
ight).$$

Lattices: Low Dimensions First

- Low dimensional surface area to volume ratios are "flat" in an objective way.
- Therefore, the Lindeberg-Feller central limit theorem applies.

Lattices: d = 1 and d = 2



Lattices: No Closed-Form for High Dimensions

Lattices: Skew Results

Lemma

If the independent random variables X_i have variances σ_i^2 and skews κ_i , then their sum has a skew of

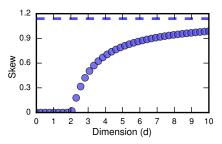
$$Skew\left(\sum_{i} X_{i}\right) = \frac{\sum_{i} \kappa_{i} \sigma_{i}^{3}}{\left(\sum_{i} \sigma_{i}^{2}\right)^{3/2}}$$

Lattice: $d \ge 3$.

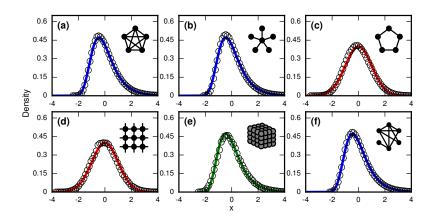
Theorem

Letting $\eta=1-1/d$, the asymptotic skew of the takeover times for a d>2 dimensional lattice is given by

Skew(d) =
$$\frac{2\zeta(3\eta)}{\zeta(2\eta)^{3/2}}$$
, where $\zeta(x) = \sum_{n=1}^{\infty} \frac{1}{n^x}$.



Results for Infinite *r*



Non-infinite fitness?

Non-infinite fitness?

- Fact: We can only record an incubation period if someone *actually* gets sick.
- Therefore, we need to condition on the population X_n hitting N before ever hitting 0.

Fitness and Skew for Complete Graph

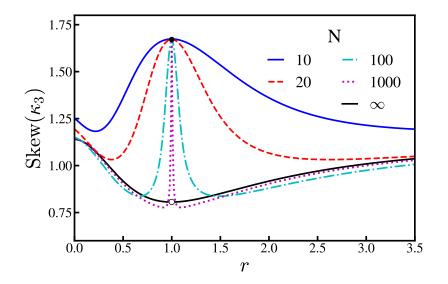


Figure: Hathcock 2019

Realism?

Red = Lognormal, Blue = Gumbel

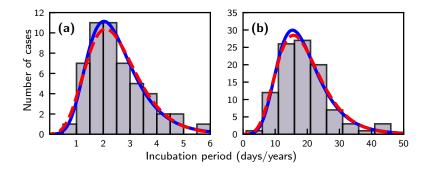


Figure: (a) Food-borne streptococcal sore throat (Sartwell 1950).

(b) Bladder tumors in a dye plant (Goldblatt 1949).

Main Point

Common aspects of disease growth:

- Evolutionary Network Dynamics
- The Coupon Collector's Problem

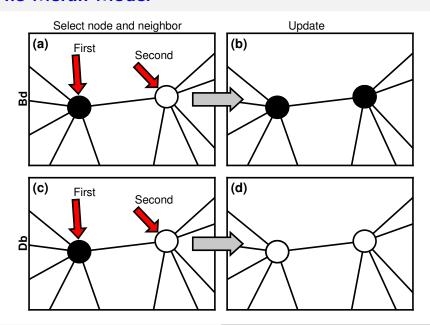
Together, they help justify Sartwell's Law.

Future Directions: Incubation Periods

Step order	Fitness-step first	Fitness-step second	Both fitness-steps
Birth first	Bd	bD	BD
Death first	Db	dB	DB

DOI: https://doi.org/10.7554/eLife.30212.006

The Moran Model



Future Directions: Incubation Periods

Step order	Fitness-step first	Fitness-step second	Both fitness-steps
Birth first	Bd	bD	BD
Death first	Db	dB	DB
DOI: https://doi.or	g/10.7554/eLife.30212.006		

- Diagnose universality within variants of Moran model.
- Connect to surface growth problems (e.g., KPZ).
- Is it possible back-derive disease properties from incubation times?

Future Directions: Growth Models

- Inconsistent growth rates lead to distribution shapes.
- What other consequences do randomized growth rates induce?

Future Directions: Seascape Fisher Equation

$$dy = (\mu y - ay^2 + D\nabla^2 y) dt + \sigma y dW,$$

Where y is a population, and dW is a Wiener process.

Future Directions: Growth Models

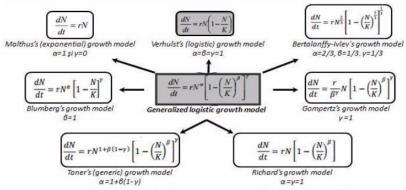
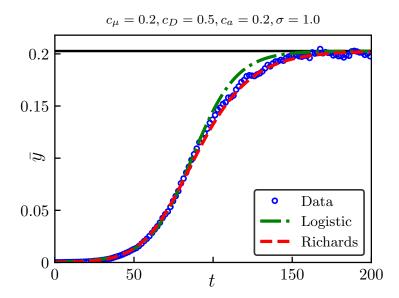


FIG. 3. The generalized logistic curve and its derivative models [11]

Figure: Cioruta (2016)

Future Directions: Growth Models with Diffusion



Future Directions: Gene Oscillators

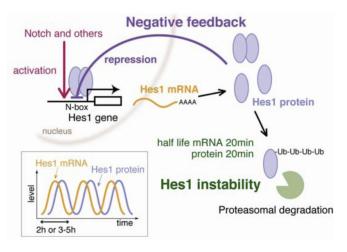
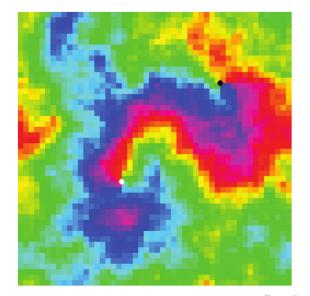


Figure: Takahashi (2011)

Can Delayed Oscillators Produce Patterns? Glasses?



Questions?

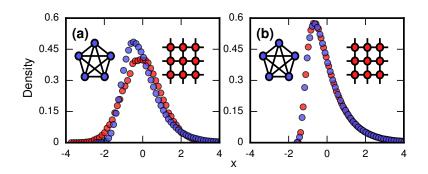


Figure: (a) $r = \infty$. (b) r = 1.

All slides available at: ottinoloffler.com

Selected References (I)

B Ottino-Löffler, J G Scott, & SH Strogatz, Evolutionary Dynamics of Incubation Periods, eLife 6:e30212 (2017).

B Ottino-Löffler, J G Scott, & SH Strogatz, Takeover Times for a Simple Model of Network Infection, Phys Rev E 96m 012313 (2017).

D Hathcock, & SH Strogatz, Fitness Dependence of the Fixation-Time Distribution for Evolutionary Dynamics on Graphs, Phys Rev E 100 012408 (2019).

Y Bakhtin, Universal Statistics of Incubation Periods and Other Detection Times via Diffusion Models, Bull Math Bio 81(4) 1070 (2018).

WA Sawyer, Ninety-Three Persons Infected by a Typhoid Carrier at a Public Dinner, Journal of the American Medical Association 63(18) (1914).

PE Sartwell, The Distribution of Incubation Periods of Infectious Disease, Am J Hyg 51 310 (1950).

MW Goldblatt, Vesical tumours induced by chemical compounds, Occupational and Environmental Medicine 6:65–81 (1949).

PAP Moran, The Effect of Selection in a Haploid Genetic Population, Proc Camb Phil Soc 54(8) (1958).

E Lieverman, C Hauert, & M A Nowak, Evolutionary Dynamics on Graphs, Nature 433(7023) (2005).

Selected References (II)

P Erdős & A Rényi, On a Classical Problem of Probability Theory, Publ Math Inst Hung Acad Sci 6 (1961).

LE Baum & P Billingsley, Asymptotic Distributions for the Coupon Collector's Problem, The Annals of Mathematical Statistics 36(6) (1965).

A Auffinger, M Damron, & J Hanson, 50 years of First Passage Percolation, arxiv.org/abs/1511.03262 (2016).

ME Gallagher, CB Brooke, R Ke, & K Koelle, Causes and Consequences of Spatial Within-Host Viral Spread, Viruses 10(11) 627 (2018).

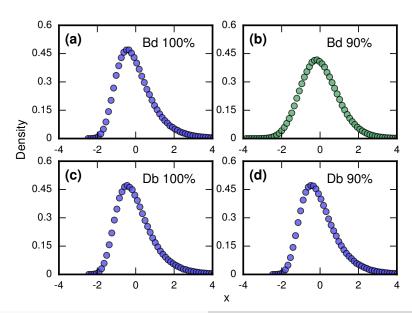
S Wieland, Z Makowska, B Campana, D Calabrese, MT Dill, J Chung, FV Chisari, MH Heim, Simultaneous Detection of Hepatitis C Virus and Interferon Stimulated Gene Expression in Infected Human Liver, Hepatology 59(6) (2013).

F Graw, A Balagopal, AJ Kandthil, SC Ray, DL Thomas, & RM Ribeiro, Inferring Viral Dynamics in Chronically HCV Infected Patients from the Spatial Distribution of Infected Hepatocytes, PLOS Comp Bio 10(11) e1003934 (2014).

KL Roberts, B Manicassamy, & RA Lamb, Influenza A Virus Uses Intercellular Connections to Spread to Neighboring Cells, Journal of Virology 89(3) 1537 (2015).

A Kumar, JH Kim, P Ranjan, MG Metcalfe, W Cao, M Mishina, S Gangappa, Z Guo, ES Boyden, S Zaki, & et al., Influenza Virus Exploits Tunneling Nanotubes for Cell-To-Cell Spread. Sci. Rep. 7 40360 (2017).

Summary: Truncation



Summary: Complex Networks

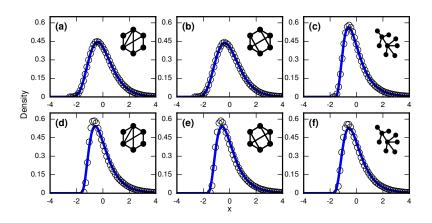


Figure: Top row: $r = \infty$. Bottom row: r = 1.