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Oscillators?
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Oscillator ingredients

Each oscillator has a phase θ.

Each oscillator has a natural frequency ω.

Oscillators couple to one another.

There is a tunable coupling strength J between oscillators.
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Main dynamics

θ̇j = ωj +
N∑

k=1

Jjk sin (θk − θj) for j = 1, . . . ,N. (1)
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Background: glass?
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Background: what is a glass?

Slow.

Messy.

Complicated.

Frustrated.
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Background: what is a glass?

Slow, non-exponential/algebraic decay of chosen order
parameter to steady states.

Substantial lack of long-range order or symmetry.

Significant redundancy in the set of possible ground
microstates that all carry similar macroscopic behavior.

Frustrated.
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What does frustration look like?

Figure: Phase Video Caption
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videos/thesis2018/CircVid.mp4


Can oscillators make a “true” glass?
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It’s complicated.
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It’s complicated.
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It’s complicated.
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Daido (1992)
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Main dynamics: Daido’s choices

θ̇j = ωj +
N∑

k=1

Jjk sin (θk − θj) for j = 1, . . . ,N.

Normally distributed natural frequencies.

Symmetric coupling matrix (Jjk = Jkj), with entries
distributed as Normal(0, 2πJ/

√
N).
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Daido’s dynamics: J < 8

Figure: Phase Video Caption
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videos/thesis2018/T_GLowJ.mp4


Daido’s dynamics: J > 8

Figure: Phase Video Caption
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videos/thesis2018/T_GHighJ.mp4


Local Fields

We define the local fields to be

Pj = rje
iφj :=

N∑
k=1

Jjke
iθk ,

for j = 1, . . . ,N. Equation (1) then becomes

θ̇j = ωj + rj sin (φj − θj) .
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Daido (1992): Local field trajectories Expand

BJOL Volcano Transitions



Daido (1992): a volcano transition
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Daido (1992): a volcano transition

Claim

There is some critical coupling scale Jc that corresponds to the
onset of a volcano transition. Moreover, this corresponds to a
transition into a glassy state.
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Main dynamics: our choices
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Main dynamics: our choices

Instead of normally distributed natural frequencies, we use the
Cauchy distribution

g(ω) =
1

π(1 + ω2)
.
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Main dynamics: our choices

Instead of normally distributed couplings, we make

Jjk =
J

N

K∑
m=1

(−1)mu
(j)
m u

(k)
m , (2)

where each u is iid, with equal probability of being ±1.
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The coupling matrix: special features

Jjk =
J

N

K∑
m=1

(−1)mu
(j)
m u

(k)
m .
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The coupling matrix: special features

Jjk =
J

N

K∑
m=1

(−1)mu
(j)
m u

(k)
m .

J controls the spread.
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The coupling matrix: special features

Jjk =
J

N

K∑
m=1

(−1)mu
(j)
m u

(k)
m .

J controls the spread.

K controls the rank, since it decides the number of outer
products making Jjk (Even Integer).
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The coupling matrix: interpretation

Jjk =
J

N

K∑
m=1

(−1)mu
(j)
m u

(k)
m .

Each oscillator j has a vector
(
u

(j)
1 , . . . , u

(j)
K

)
, and the

coupling between oscillators j and k depends on the number
of places their vectors agree.
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The coupling matrix: extra features Expand

Jjk =
J

N

K∑
m=1

(−1)mu
(j)
m u

(k)
m .

If K = N and N →∞, then the off-diagonal entries go to
Normal(0, J/

√
N). (Has relevant limit)
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Local Fields (reminder)

We define the local fields to be

Pj = rje
iφj :=

N∑
k=1

Jjke
iθk ,

for j = 1, . . . ,N. Equation (1) then becomes

θ̇j = ωj + rj sin (φj − θj) .
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Local Fields Caption Expand
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Infinite N
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Infinite N

f (θ, ω, u, t) = density of oscillators with natural frequency ω,
interaction vector u, and phase θ at time t.

ν(θ, ω, u, t) = flow of ditto.
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Infinite N: interaction matrix

Much the same as before:

J(u, u′) := J
K∑

m=1

(−1)mumu
′
m.

The u’s are random K -vectors with entries being ±1 with equal
probability, so

ρ(u′) = 2−K
∑
v

δ(u′ − v),

where the sum runs over all the equally likely v ∈ {±1}K .
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Infinite N: putting it together Expand

So

θ̇j = ωj +
N∑

k=1

Jjk sin (θk − θj)

becomes
ν(θ, ω, u, t) = ω + 〈J(u, u′) sin(θ′ − θ)〉, (3)

〈·〉 denotes integration using the time-dependent measure
f (θ′, ω′, u′, t)dθ′g(ω′)dω′ρ(u′)du′.
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Infinite N: local fields again

Also,

Pj = rje
iφj :=

N∑
k=1

Jjke
iθk ,

becomes
P(u, t) = 〈J(u, u′)e iθ

′〉.
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The Ott-Antonsen Ansatz

f (θ, ω, u, t) =
1

2π

[
1 +

∞∑
n=1

α(ω, u, t)ne inθ + c.c.

]
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Using the ansatz Expand

Following the conventions and defining a(u, t) := α(−i , u, t), we
find

ȧ(u, t) = −a(u, t) +
P∗(u, t)− a(u, t)2P(u, t)

2
. (4)
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Using the ansatz Expand

The ansatz also simplifies the local fields into

P(u, t) =
J

2K

∑
u′

K∑
m=1

(−1)mumu
′
ma
∗(u′, t).
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Time to Ott

By replacing P with its sum, we get a closed set of 2K ordinary
differential equations for a(u, t), one for each possible choice of u.
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Stability?

We have a 2K dimensional ODE.
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Stability?

We have a 2K dimensional ODE.

a(u, t) = 0 =⇒ f (θ, ω, u, t) = 1/(2π), which is incoherence.
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Stability?

We have a 2K dimensional ODE.

a(u, t) = 0 =⇒ f (θ, ω, u, t) = 1/(2π), which is incoherence.

Jc , the critical coupling, corresponds to the incoherent state
no longer being stable.
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Stability?

We have a 2K dimensional ODE.

a(u, t) = 0 =⇒ f (θ, ω, u, t) = 1/(2π), which is incoherence.

Jc , the critical coupling, corresponds to the incoherent state
no longer being stable.

To calculate Jc , we just need to linearize this ODE and
find the first zero eigenvalue.
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Jacobian Expand

The Jacobian is

− I +
J

2K+1
A. (5)

Here I is the 2K × 2K identity matrix and

Au,v =
K∑

m=1

(−1)mumvm

where the entries of A have been conveniently indexed by binary
strings u, v ∈ {±1}K .
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Stability? Expand

Since the Jacobian is

−I +
J

2K+1
A,

the Jacobian has exactly three distinct eigenvalues:

1 −1 + J/2 with multiplicity K/2

2 −1− J/2 with multiplicity K/2

3 −1 with multiplicity 2K − K
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Main Result:

Theorem

Jc = 2. (6)
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Local Fields Expand
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Numerical checks?
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Numerical checks: it’s complicated. Expand
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Convergence to Jc = 2 Expand
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Are we a glass yet?
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Are we a glass yet?

A proposed signature feature of oscillator glasses is nonexponential
relaxation of the order parameter

Z (t) :=
N∑

k=1

e iθk (t).
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No. Expand

Figure: Dashed blue line has J = 0. Solid red has J = 10. N = 5000 for
both.
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Is a glass possible?

Our continuum limit gives us 2K ODEs.

Therefore, it is only consistent when N � 2K

What if that doesn’t happen?
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Algebraic decay? Expand
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Figure: Dashed blue line has J = 0. Solid red has J = 10. N = 5000 for
both.
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Algebraic decay? Expand
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Figure: Dashed blue line has J = 0. Solid red has J = 10. N = 5000 for
both.
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Final Summary

Jc = 2, regardless of the rank of the coupling matrix.

The volcano transition can occur in absence of a glass
transition.

There is still the possibility of a glass transition in the high K
limit of this model.
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Future directions
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Future directions

Checking the large K limit for glassy behavior.
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Future directions

Applying results to associative memory models:

Jjk =
J

N

K∑
m=1

(1− δjk)eµ
(j)
m eµ

(k)
m

with each µ
(j)
m being uniform on 0-2π.
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Future directions

Semi-field parameters are set by

Fm =
N∑

k=1

u
(k)
m e iθk .

These have many fun properties, including their relationship to
local fields:

Pj =
J

N

K∑
m=1

(−1)mu
(j)
m Fm.

They also make for good videos: Example Caption
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videos/thesis2018/FP_HighJ.mp4
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Questions? (Full slides available at ottinoloffler.com)

Figure: Summary Video Full Caption

Personal: people.cam.cornell.edu/ bjo34/BJOL Volcano Transitions

videos/thesis2018/All_HighJ.mp4


Daido’s dynamics: J < 8 Return

Figure: Field Video Caption
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videos/thesis2018/P_GLowJ.mp4


Daido’s dynamics: J > 8 Return

Figure: Field Video Caption
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videos/thesis2018/P_GHighJ.mp4


The coupling matrix: extra features Return

Jjk =
J

N

K∑
m=1

(−1)mu
(j)
m u

(k)
m .

Outer products make it symmetric.
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The coupling matrix: extra features Return

Jjk =
J

N

K∑
m=1

(−1)mu
(j)
m u

(k)
m .

Outer products make it symmetric.

(−1)m ensures the diagonal is 0 (No spurious information)
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The coupling matrix: extra features Return

Jjk =
J

N

K∑
m=1

(−1)mu
(j)
m u

(k)
m .

Outer products make it symmetric.

(−1)m ensures the diagonal is 0 (No spurious information)

If K = N and N →∞, then the off-diagonal entries go to
Normal(0, J/

√
N). (Has relevant limit)
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The coupling matrix: extra features Return

Jjk =
J

N

K∑
m=1

(−1)mu
(j)
m u

(k)
m .

Outer products make it symmetric.

(−1)m ensures the diagonal is 0 (No spurious information)

If K = N and N →∞, then the off-diagonal entries go to
Normal(0, J/

√
N). (Has relevant limit)

Entries of Jjk are independent. (Are they?)
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Yes, they are (I) Return

The only chance of non-trivial dependence is between entries of
the same row or column of the coupling matrix, that is, between
Jjk and Jj l .
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Yes, they are (II) Return

Take some x , y ∈ {0, 1, . . . ,K}, then

P := P

(
N

J
Jjk = 2x − K and

N

J
Jj l = 2y − K

)
= P

(
K∑

m=1

(−1)mu
(j)
m u

(k)
m = 2x − K and

K∑
m=1

(−1)mu
(j)
m u

(l)
m = 2y − K

)

Let am := (−1)mu
(j)
m , bm := u

(k)
m , cm := u

(l)
m .
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Yes, they are (III) Return

Let am := (−1)mu
(j)
m , bm := u

(k)
m , cm := u

(l)
m .

Each can be thought of as a fair K -long coinflip sequence of +1’s
and −1’s.

P = P

(
K∑

m=1

ambm = 2x − K and
K∑

m=1

amcm = 2y − K

)
= P ( coinflip sequence a agrees with b x times and with c y times )

=

(
K

x

)(
K

y

)
2−2K

= P

(
N

J
Jjk = 2x − K

)
P

(
N

J
Jjl = 2y − K

)
X
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Yes, they are (IV) Return

Figure: Measuring absolute correlation between J1,2 and Jj,k across a
coupling matrix of size N = 25 and K = 4, averaged across 105

realizations. Blue entries (the diagonal, (1,2), and (2,1)) have trivial
correlations and are ignored.
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Phase distributions for J = 1 Return

Figure: Phase Video Full Caption
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videos/thesis2018/T_LowJ.mp4


Phase distributions for J = 3 Return

Figure: Phase Video Full Caption
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videos/thesis2018/T_HighJ.mp4


Local Fields for J = 1 Return

Figure: Field Video Full Caption
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videos/thesis2018/P_LowJ.mp4


Local Fields for J = 3 Return

Figure: Field Video Full Caption
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videos/thesis2018/P_HighJ.mp4


Continuum limit explanation (I) Return

How does

θ̇j = ωj +
N∑

k=1

Jjk sin (θk − θj)

become
ν(θ, ω, u, t) = ω + 〈J(u, u′) sin(θ′ − θ)〉? (7)
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Continuum limit explanation (II) Return

Since

J(u, u′) := J
K∑

m=1

(−1)mumu
′
m.

we get

θ̇j = ωj +
N∑

k=1

1

N
J
(
u(j), u(k)

)
sin (θk − θj) .
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Continuum limit explanation (III) Return

Consider adding a hypothetical oscillator with phase θ, natural
frequency ω, and interaction vector u. Then its instantaneous
frequency would be given by

ν(θ, ω, u, t) = ω +
N∑

k=1

1

N
J
(
u, u(k)

)
sin (θk − θ) .

BJOL Volcano Transitions



Continuum limit explanation (IV) Return

Sums are just integrals, so

ν(θ, ω, u, t) = ω +

∫
J
(
u, u′

)
sin (θk − θ)µdθ′dω′du′,

where we have the normalized measure

µ :=
1

N

N∑
k=1

δ
(
θ′ − θk

)
δ
(
ω′ − ωk

)
δ
(
u′ − u(k)

)
.
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Continuum limit explanation (V) Return

Let’s slightly overload our terminology by introducing

θ̂(k , ω, u, t) =

{
θk(t) if ω = ωk and u = u(k),

0 else.
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Continuum limit explanation (VI) Return

Naturally,

lim
N→∞

1

N

N∑
k=1

δ (ω − ωk) = g(ω)

lim
N→∞

1

N

N∑
k=1

δ
(
u − u(k)

)
= ρ(u).

But now, we define a new measure

f (θ, ω, u, t) := lim
N→∞

1

N

N∑
k=1

δ
(
θ − θ̂(k, ω, u, t)

)
.
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Continuum limit explanation (VII) Return

Because u and ω are independent, we find that

µ =
1

N

N∑
k=1

δ
(
θ′ − θk

)
δ
(
ω′ − ωk

)
δ
(
u′ − uk

)
=

1

N

N∑
k=1

δ
(
θ′ − θ̂(k, ω, u, t)

)
δ
(
ω′ − ωk

)
δ
(
u′ − uk

)
N→∞−−−−→ f (θ, ω, u, t)g(ω)ρ(u)

BJOL Volcano Transitions



Continuum limit explanation (VIII) Return

So in the large N limit, we find that

ν(θ, ω, u, t) = ω + 〈J(u, u′) sin(θ′ − θ)〉,

where 〈·〉 denotes integration using the time-dependent measure
f (θ′, ω′, u′, t)dθ′g(ω′)dω′ρ(u′)du′. X
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Ott trick explanation (I) Return

How

f (θ, ω, u, t) =
1

2π

[
1 +

∞∑
n=1

α(ω, u, t)ne inθ + c.c.

]

becomes

ȧ(u, t) = −a(u, t) +
P∗(u, t)− a(u, t)2P(u, t)

2
.
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Ott trick explanation (II) Return

Because the total number of oscillators doesn’t change, a
continuity equation must be obeyed. In particular,

−ft = (f ν)θ.
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Ott trick explanation (III) Return

LHS first.

−ft =∂t
−1

2π

[
1 +

∞∑
n=1

α(ω, u, t)ne inθ + c.c.

]

=
−1

2π

∞∑
n=1

nα̇αn−1e inθ + nα̇∗α∗n−1e−inθ
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Ott trick explanation (IV) Return

Now RHS . . .
After some manipulation, this:

ν(θ, ω, u, t) = ω + 〈J(u, u′) sin(θ′ − θ)〉,

becomes this:

ν(θ, ω, u, t) = ω +
1

2i

[
e−iθP(u, t)− e iθP∗(u, t)

]
.
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Ott trick explanation (V) Return

RHS takes more work than LHS . . .

f ν =
1

2π

[
1 +

∞∑
n=1

αne inθ + α∗ne−inθ

] [
ω +

1

2i

(
e−iθP − e iθP∗

)]
.
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Ott trick explanation (VI) Return

But eventually . . .

f ν =
1

4πi
[2ωi + αP − α∗P∗]

+
1

4πi

∞∑
n=1

(
2ωiαn + αn+1P − αn−1P∗

)
e inθ

+
1

4πi

∞∑
n=1

(
2ωiα∗n − α∗n+1P∗ + α∗n−1P

)
e−inθ.
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Ott trick explanation (VII) Return

And so . . .

(f ν)θ =
1

4πi

∞∑
n=1

(in)
(
2ωiαn + αn+1P − αn−1P∗

)
e inθ

+
1

4πi

∞∑
n=1

(−in)
(
2ωiα∗n − α∗n+1P∗ + α∗n−1P

)
e−inθ.
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Ott trick explanation (VIII) Return

By setting ft + (f ν)θ = 0 and setting Fourier coefficients to be
equal, then

α̇ = −ωαi +
P∗ − α2P

2
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Ott trick explanation (IX) Return

The calculation of P(u, t) reveals it only depends on α(−i , u, t), so
setting ω = −i and a(u, t) := α(−i , u, t), we finally get

ȧ(u, t) = −a(u, t) +
P∗(u, t)− a(u, t)2P(u, t)

2
.X
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Another trick explanation (I) Return

How
P(u, t) = 〈J(u, u′)e iθ

′〉

becomes

P(u, t) =
J

2K

∑
u′

K∑
m=1

(−1)mumu
′
ma
∗(u′, t).
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Another trick explanation (II) Return

Sub in the ansatz to get

P(u, t) =

∫
J(u, u′)e iθ

′
f (θ′, ω′, u′, t)g(ω′)ρ(u′)dθ′dω′du′

=

∫
J(u, u′)

2π

[
e iθ
′

+
∞∑
n=1

αne i(n+1)θ + α∗ne−i(n−1)θ

]
g(ω′)ρ(u′)dθ′dω′du′.
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Another trick explanation (III) Return

Take the θ′ integral first to get rid of almost everything

P(u, t) =

∫
J(u, u′)

2π
(2πα∗)g(ω′)ρ(u′)dω′du′

=

∫
J(u, u′)α∗g(ω′)ρ(u′)dω′du′.
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Another trick explanation (IV) Return

Next, we want to take the ω′ integral. Since we are using a Cauchy
distribution, then

g(ω) =
1

π(a + ω2)
=

i/(2π)

ω + i
+
−i/(2π)

ω − i
.

So if α has the right smoothness and decay, then the integrand has
exactly two poles at ±i .
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Another trick explanation (V) Return

So by taking the appropriate contour integral, we get

P(u, t) =

∫
J(u, u′)

(∫
α∗(ω′, u′, t)g(ω′)dω′

)
ρ(u′)du′

=

∫
J(u, u′)

(
−2πi

i

2π
α∗(−i , u′, t)

)
ρ(u′)du′

=

∫
J(u, u′)a(u′, t)ρ(u′)du′,

where a(u, t) := α(−i , u, t).
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Another trick explanation (VI) Return

From here, just plug in for J, recalling that
ρ(u′) = 2−K

∑
v δ(u′ − v)

P(u, t) =

∫
J(u, u′)a(u′, t)ρ(u′)du′

=
J

2K

∑
u′

K∑
m=1

(−1)mumu
′
ma
∗(u′, t).X
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Why that Jacobian? (I) Return

How

ȧ(u, t) = −a(u, t) +
P∗(u, t)− a(u, t)2P(u, t)

2
.

becomes

−I +
J

2K+1
A.
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Why that Jacobian? (II) Return

We want to linearize around a(u, t) = 0 for all u.

P and P∗ are just O(a).

Therefore, we can drop the a2P term near 0.
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Why that Jacobian? (III) Return

Therefore, near the incoherent state,

ȧ(u, t) ≈− a(u, t) +
1

2
P∗(u, t) + O(a2)

≈− a(u, t) +
J

2K+1

∑
u′

K∑
m=1

(−1)mumu
′
ma(u′, t)

BJOL Volcano Transitions



Why that Jacobian? (IV) Return

So the entries of the Jacobian are given by

∂a(u)ȧ(u) =− 1 +
J

2K+1

K∑
m=1

(−1)mumum

=− 1 +
J

2K+1

K∑
m=1

(−1)m = −1

on the diagonal, and

∂a(v)ȧ(u) =
J

2K+1

K∑
m=1

(−1)mumvm

of the off-diagonal.
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Why that Jacobian? (V) Return

The most convenient way to index the entries of the Jacobian is by
using the vectors u, v ∈ {+1,−1}K , AKA the set of all K-long
binary strings. So entry u, v of the Jacobian is

−δu,v +
J

2K+1

K∑
m=1

(−1)mumvm
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Why that Jacobian? (VI) Return

Therefore, the Jacobian is

−I +
J

2K+1
A,

where I is the 2K × 2K identity matrix and

Au,v =
K∑

m=1

(−1)mumvm.X
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Eigenvalues? Return

For each integer 1 ≤ n ≤ K and each binary string v ∈ {±1}K ,

define a vector ζ(n) ∈ R2K whose v th entry is

ζ
(n)
v = vn.
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Features of ζ(n)? Return

The set of all K distinct ζ(n) are orthogonal. (Are they?)

By using the evenness of K , then Aζ(n) = (−1)n2K ζ(n).

(Really?)
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Other eigens? Return
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Other eigens? Expand Return

Given any η perpendicular to all the ζ(n), one finds Aη = 0.
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Stability? Return

Therefore, A has exactly three distinct eigenvalues:

1 +2K with multiplicity K/2

2 −2K with multiplicity K/2

3 0 with multiplicity 2K − K
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Yes, they are orthogonal (I) Return

Why is

ζ
(n)
v = vn,

orthogonal for all n?
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Yes, they are orthogonal (II) Return

Let n 6= m,

ζ(n)ζ(m) =
∑
v

vnvm.
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Yes, they are orthogonal (III) Return

Let n 6= m, then

ζ(n)ζ(m) =
∑
v

vnvm

= |{# times m and n agree}|
− |{# times m and n disagree}|

=2K−2(1 + 1)− 2K−2(1 + 1)

=0.X
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Yes, they are eigenvectors (I) Return

Why does

Auv =
K∑

m=1

(−1)mumvm

have
ζ

(n)
v = vn,

as an eigenvector?
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Yes, they are eigenvectors (II) Return

Let’s do this directly, and let’s fix some n ∈ {1, 2, . . . ,K} and
u ∈ {+1,−1}K . So

(
Aζ(n)

)
u

=
∑
v

Auvζ
(n)
v =

∑
v

(
K∑

m=1

(−1)mumvm

)
vn

=
K∑

m=1

∑
v

(−1)mumvmvn

=
∑
v

(−1)nunvnvn +
∑
m 6=n

∑
v

(−1)mumvmvn

= Term 1 + Term 2
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Yes, they are eigenvectors (III) Return

First term!

Term 1 =
∑
v

(−1)nunvnvn

= (−1)nun
∑
v

v2
n

= (−1)n2Kun
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Yes, they are eigenvectors (IV) Return

The second term therefore becomes

Term 2 =
∑
m 6=n

∑
v∈{±1}K

(−1)mumvmvn

=
∑
m 6=n

∑
v ′∈{±1}K−1

u′mv
′
m,

where the u′ and v ′ are n-deleted versions of (−1)mum and vmvn
specifically.
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Yes, they are eigenvectors (V) Return

Second term becomes a matter of just counting the number of
places two vectors u′ and v ′ of length K − 1 disagree, across all
possible v ′. So combinatorically,

Term 2 =2
K−1∑
w=0

(K − 1− 2w)

(
K − 1

w

)
.
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Yes, they are eigenvectors (VI) Return

But . . .

Term 2 =2
K−1∑
w=0

(K − 1− 2w)

(
K − 1

w

)
=0.

This is an odd function times an even function, so the total sum
goes to zero. (Really?)
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Yes, they are eigenvectors (VII) Return

Putting them back together . . .(
Aζ(n)

)
u

=Term 1 + Term 2

=(−1)n2Kun + 0

=(−1)n2K ζ
(n)
u ,∀u.

Therefore, for all n, we have

Aζ(n) = (−1)n2K ζ(n).X
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Showing the nullspace (I) Return

Why does
η ⊥ ζ(n) for all n

imply
Aη = 0?
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Showing the nullspace (II) Return

Since
η ⊥ ζ(n) for all n,

then for any n = 1, 2, . . . ,K , we have

ηζ(n) = 0.
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Showing the nullspace (III) Return

Therefore,

(Aη)u =
∑
v

Auvηu =
∑
v

K∑
m=1

(−1)mumvmηu

=
K∑

m=1

(−1)mum
∑
v

vmηu =
K∑

m=1

(−1)mum
(
ηζ(n)

)
=

K∑
m=1

(−1)mum0 = 0.

So Aη = 0, so it forms a nullspace. X.
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Numerical checks: Daido’s method Return

Measure the location of the peak:

1 If the peak is at zero, the we are below the transition

2 Otherwise, we are above it.
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Daido problematic Return

Measure the location of the peak:

Radial density noisiest at origin.

Need to collect and add many pdfs, but ignore most of the
data in diagnosis.

Binning of pdfs will be arbitrary.
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Numeircal checks: our method Return

Fit the radial distribution of the data to symmetric normals

h(r) =
1√

2πσ2
exp

(
−(r − µ)2

2σ2

)
+

1√
2πσ2

exp

(
−(r + µ)2

2σ2

)
for r ≥ 0.

BJOL Volcano Transitions



Why use this fit? Expand Return

The functional form of h(r) allows us to identify its convexity at
the origin easily.

γ := µ2/σ2 < 1 implies concave down.

γ > 1 implies concave up.
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Measuring γ? Return

We are going to use method of moments on the 2D local field
data, with Mn being the n’th moment.
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Measuring γ? Expand Return

M+1M−1 =
π

2

1 + γ

[e−γ/2 +
√
πγ/2Erf(

√
γ/2)]2

.

The left hand side comes from simulation data. Expand

The right hand side is monotone in γ. Expand

Therefore, h(r) is concave down at the origin (and therefore
J < Jc) if and only if M+1M−1 & 1.4694.
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Concavity (I) Return

When is the sum of two normals centered at ±µ concave up at the
origin?
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Concavity (II) Return

When is

h(r) =
2√

2πσ2
exp

(
−µ2 − r2

2σ2

)
cosh

(µr
σ2

)
,

concave up at the origin?
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Concavity (III) Return

Letting γ := µ2/σ2 and β := µ/σ2,

h(r) =
2β√
2πγ

exp

(
−γ
2

)
exp

(
−r2β2

2γ

)
cosh (rβ) .
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Concavity (IV) Return

∂2
r h(r) =β3γ−2 exp

(
−γ
2
− β2r2

2γ

)√
2

πγ

× cosh(βr)
[
−γ + γ2 + β2r2 − 2βγr tanh(βr)

]
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Concavity (V) Return

Evaluating therefore gives

∂2
r h(0) = β3γ−1 exp (−γ/2)

√
2

πγ
(γ − 1) .

So h is concave down whenever γ < 1 and concave up whenever
γ > 1. X

BJOL Volcano Transitions



A moment for γ (I) Return

Why does

h(r) =
2√

2πσ2
exp

(
−µ2 − r2

2σ2

)
cosh

(µr
σ2

)
,

lead to

M+1M−1 =
π

2

1 + γ

[e−γ/2 +
√
πγ/2Erf(

√
γ/2)]2

?
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A moment for γ (II) Return

Define

µn :=

∫ ∞
0

rnh(r)dr
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A moment for γ (III) Return

By computation, and using γ := µ2/σ2 and β := µ/σ2,

µ0 = 1

µ1 = e−γ/2

√
2γ

π

1

β
+
γ

β
Erf

(√
γ

2

)
µ2 =

γ2 + γ

β2

BJOL Volcano Transitions



A moment for γ (IV) Return

Notice!

h(r) is a distribution on the interval (0,∞).

However, our data comes from a sample of a 2D space.
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A moment for γ (V) Return

So the “true” distribution we are sampling is closer to

H(x , y) :=
h
(√

x2 + y2
)

2πµ1
,

since it has the correct radial behavior, is rotationally symmetric,
and is properly normalized on the plane.
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A moment for γ (VI) Return

So the moments we are numerically observing are

Mn =

∫ ∫
H(x , y)

(√
x2 + y2

)n
dxdy

=

∫ ∫
rn

h(r)

2πµ1
rdrdθ

=
µn+1

µ1
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A moment for γ (VII) Return

By earlier computation,

M−1 =
µ0

µ1
=

β

e−γ/2
√

2γ
π + γErf

(√
γ
2

)
M+1 =

µ2

µ1
=

(γ2 + γ)/β

e−γ/2
√

2γ
π + γErf

(√
γ
2

)
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A moment for γ (VIII) Return

So, we directly get

M+1M−1 =
π

2

1 + γ

[e−γ/2 +
√
πγ/2Erf(

√
γ/2)]2

.X
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Measuring M+1M−1? (I) Return

How do we measure M+1M−1?

BJOL Volcano Transitions



Measuring M+1M−1? (II) Return

Estimate individual moments from numerically obtained values of

Pj(t) = xj(t) + iyj(t) :=
N∑

k=1

Jjk (cos(θk(t)) + i sin(θk(t))) ,

by averaging over all N feilds and over the sampling window T .

M+1 ≈
1

NT

N∑
j=1

T∑
t=1

√
xj(t)2 + yj(t)2

M−1 ≈
1

NT

N∑
j=1

T∑
t=1

√
xj(t)2 + yj(t)2

−1
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Measuring M+1M−1? (III) Return

We then estimate their product by averaging these moments across
L independent simulations,

E [M+1] = µ+1 ≈
1

L

L∑
l=1

M
(l)
+1

E [M−1] = µ−1 ≈
1

L

L∑
l=1

M
(l)
−1

E [M+1M−1] ≈ 1

L

L∑
l=1

M
(l)
+1M

(l)
+1.

Note!
E [M+1M−1] 6= µ+1µ−1,

because moments aren’t independent.
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Measuring M+1M−1? (IV) Return

Similarly,

Var (M+1) = σ2
+1

Var (M−1) = σ2
−1

can be estimated by online methods, but

Var (M+1M−1)

is more difficult.
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Measuring M+1M−1? (V) Return

The error on the product is given by

Var (M+1M−1) ≈ 1

L

[
µ2

+1σ
2
−1 + µ2

−1σ
2
+1

+2µ+1µ−1Cov (M+1,M−1)] + O

(
1

L2

)
.

so this gives us a numerical way to estimate M+1M−1. X

BJOL Volcano Transitions



M+1M−1 monotone? (I) Return

How the heck is

M+1M−1 =
π

2

1 + γ

[e−γ/2 +
√
πγ/2Erf(

√
γ/2)]2

montone in γ?
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M+1M−1 monotone? (II) Return

Let’s define

π

2f (γ)2
=
π

2

1 + γ

[e−γ/2 +
√
πγ/2Erf(

√
γ/2)]2

,

so this expression is monotone if f is monotone in γ.
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M+1M−1 monotone? (III) Return

Is

f (γ) =
e−γ/2 +

√
πγ/2Erf(

√
γ/2)√

1 + γ
,

monotone?
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M+1M−1 monotone? (IV) Return

Is

f ′(γ) =

√
π/(8γ)

(1 + γ)3/2

(
Erf

(√
γ

2

)
−
√

2γ

π
e−γ/2

)

single signed?
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M+1M−1 monotone? (V) Return

Notice!

Erf

(√
γ

2

)
=

∫ √γ/2

0

2√
π
e−t

2
dt
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M+1M−1 monotone? (VI) Return

Also notice! √
γ

2
e−γ/2 =

∫ √γ/2

0
e−t

2 − 2t2e−t
2
dt
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M+1M−1 monotone? (VII) Return

Therefore!

f ′(γ) =

√
π/(8γ)

(1 + γ)3/2

(∫ √γ/2

0

2√
π
e−t

2
dt

− 2√
π

∫ √γ/2

0
e−t

2 − 2t2e−t
2
dt

)
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M+1M−1 monotone? (VIII) Return

Therefore!

f ′(γ) =

√
π/(8γ)

(1 + γ)3/2

∫ √γ/2

0

4√
π
t2e−t

2
dt

≥0.

So M+1M−1 is monotone in γ! X
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M+1M−1 monotone? (IX) Return

0.0 0.5 1.0 1.5 2.0
1.3

1.4

1.5

1.6

γ

M+1M−1
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Appendix X 2 combo! (I) Return

Split the sum in half to get

Term 2 =2
K−1∑
w=0

(K − 1− 2w)

(
K − 1

w

)

=2

K/2−1∑
w=0

(K − 1− 2w)

(
K − 1

w

)

+ 2
K−1∑

w=K/2

(K − 1− 2w)

(
K − 1

w

)
.
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Appendix X 2 combo! (II) Return

Letting s := K − 1− w gives

Term 2 =2

K/2−1∑
w=0

(K − 1− 2w)

(
K − 1

w

)

+ 2
0∑

s=K/2−1

(−K + 1 + s)

(
K − 1

K − 1− s

)
.
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Appendix X 2 combo! (III) Return

Therefore,

Term 2 =2

K/2−1∑
w=0

(K − 1− 2w)

(
K − 1

w

)

− 2

K/2−1∑
s=0

(K − 1− 2s)

(
K − 1

s

)
=0.
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What does frustration look like? Return

Figure: Each dot represents a distinct θj(t) over time under using a
coupled oscillator model, with zero natural frequencies and random ±1
coupling strengths. Here, N = 75, and we used a fourth-order
Runge-Kutta integration with a step size of 0.002 across 2000 recorded
steps, and initial phases distributed as a normal about 0. Each frame
represents 10 steps.
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Daido’s dynamics: J = 4 Return

Figure: Distribution of local fields. Each dot represents a distinct Pj(t)
over time under using Daido’s setup, with normally distributed coupling
strengths and natural frequencies. Here, N = 500, J = 4 and we used a
fourth-order Runge-Kutta integration with a step size of 0.01, 3600
recorded steps, and uniformly random initial phases. Each frame
represents 10 steps.
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Daido’s dynamics: J = 4 Return

Figure: Distribution of phases versus natural frequencies. Each dot
represents a distinct θj(t) over time under using Daido’s setup, with
normally distributed coupling strengths and natural frequencies. Here,
N = 500, J = 4 and we used a fourth-order Runge-Kutta integration
with a step size of 0.01, 3600 recorded steps, and uniformly random
initial phases. Each frame represents 10 steps.
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Daido’s dynamics: J = 14 Return

Figure: Distribution of local fields. Each dot represents a distinct Pj(t)
over time under using Daido’s setup, with normally distributed coupling
strengths and natural frequencies. Here, N = 500, J = 14 and we used a
fourth-order Runge-Kutta integration with a step size of 0.01, 3600
recorded steps, and uniformly random initial phases. Each frame
represents 10 steps.
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Daido’s dynamics: J = 14 Return

Figure: Distribution of phases versus natural frequencies. Each dot
represents a distinct θj(t) over time under using Daido’s setup, with
normally distributed coupling strengths and natural frequencies. Here,
N = 500, J = 14 and we used a fourth-order Runge-Kutta integration
with a step size of 0.01, 3600 recorded steps, and uniformly random
initial phases. Each frame represents 10 steps.
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New dynamics: J = 1 Return

Figure: Distribution of local fields. Each dot represents a distinct Pj(t)
over time under using our setup, with an interaction-vector based
coupling and Cauchy distributed natural frequencies. Here, N = 2500,
K = 6, J = 1 and using a fourth-order Runge-Kutta integration with a
step size of 0.01, 3600 recorded steps, and uniformly random initial
phases. Each frame represents 100 steps.
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New dynamics: J = 1 Return

Figure: Distribution of semi-fields. Each dot represents a distinct Fm(t)
over time under using our setup, with an interaction-vector based
coupling and Cauchy distributed natural frequencies. Here, N = 2500,
K = 6, J = 1 and using a fourth-order Runge-Kutta integration with a
step size of 0.01, 3600 recorded steps, and uniformly random initial
phases. Each frame represents 100 steps.
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New dynamics: J = 1 Return

Figure: Distribution of phases versus natural frequencies. Each dot
represents a distinct θj(t) over time under using our setup, with an
interaction-vector based coupling and Cauchy distributed natural
frequencies. Here, N = 2500, K = 6, J = 1 and using a fourth-order
Runge-Kutta integration with a step size of 0.01, 3600 recorded steps,
and uniformly random initial phases. Each frame represents 100 steps.
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New dynamics: J = 1 Return

Figure: Density of phase offsets from local fields versus coupling strength
across all pairs of oscillators j and k . Darker cells correspond to higher
densities. This simulation used our setup with an interaction-vector
based coupling and Cauchy distributed natural frequencies. Here,
N = 2500, K = 6, J = 1 and using a fourth-order Runge-Kutta
integration with a step size of 0.01, 3600 recorded steps, and uniformly
random initial phases. Each frame represents 100 steps.
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New dynamics: J = 1 Return

Figure: Distribution of local fields and semi-fields. Each dot represents a
distinct Pj(t) or Fm over time under using our setup, with an
interaction-vector based coupling and Cauchy distributed natural
frequencies. Here, N = 2500, K = 6, J = 1 and using a fourth-order
Runge-Kutta integration with a step size of 0.01, 3600 recorded steps,
and uniformly random initial phases. Each frame represents 100 steps.
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New dynamics: J = 1 Return

Figure: Distribution of phases versus natural frequencies. This
simulation used our setup with an interaction-vector based coupling and
Cauchy distributed natural frequencies. Here, N = 2500, K = 6, J = 1
and using a fourth-order Runge-Kutta integration with a step size of
0.01, 3600 recorded steps, and uniformly random initial phases. Each
frame represents 100 steps.
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New dynamics: J = 1 Return

Figure: Combination of all other videos. This simulation used our setup
with an interaction-vector based coupling and Cauchy distributed natural
frequencies. Here, N = 2500, K = 6, J = 1 and using a fourth-order
Runge-Kutta integration with a step size of 0.01, 3600 recorded steps,
and uniformly random initial phases. Each frame represents 100 steps.
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New dynamics: J = 3 Return

Figure: Distribution of local fields. Each dot represents a distinct Pj(t)
over time under using our setup, with an interaction-vector based
coupling and Cauchy distributed natural frequencies. Here, N = 2500,
K = 6, J = 3 and using a fourth-order Runge-Kutta integration with a
step size of 0.01, 3600 recorded steps, and uniformly random initial
phases. Each frame represents 100 steps.

BJOL Volcano Transitions



New dynamics: J = 3 Return

Figure: Distribution of semi-fields. Each dot represents a distinct Fm(t)
over time under using our setup, with an interaction-vector based
coupling and Cauchy distributed natural frequencies. Here, N = 2500,
K = 6, J = 3 and using a fourth-order Runge-Kutta integration with a
step size of 0.01, 3600 recorded steps, and uniformly random initial
phases. Each frame represents 100 steps.
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New dynamics: J = 3 Return

Figure: Distribution of phases versus natural frequencies. Each dot
represents a distinct θj(t) over time under using our setup, with an
interaction-vector based coupling and Cauchy distirbuted natural
frequencies. Here, N = 2500, K = 6, J = 3 and using a fourth-order
Runge-Kutta integration with a step size of 0.01, 3600 recorded steps,
and uniformly random initial phases. Each frame represents 100 steps.
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New dynamics: J = 3 Return

Figure: Density of phase offsets from local fields versus coupling strength
across all pairs of oscillators j and k . Darker cells correspond to higher
densities. This simulation used our setup with an interaction-vector
based coupling and Cauchy distributed natural frequencies. Here,
N = 2500, K = 6, J = 3 and using a fourth-order Runge-Kutta
integration with a step size of 0.01, 3600 recorded steps, and uniformly
random initial phases. Each frame represents 100 steps.
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New dynamics: J = 3 Return

Figure: Distribution of local fields and semi-fields. Each dot represents a
distinct Pj(t) or Fm(t) over time under using our setup, with an
interaction-vector based coupling and Cauchy distributed natural
frequencies. Here, N = 2500, K = 6, J = 3 and using a fourth-order
Runge-Kutta integration with a step size of 0.01, 3600 recorded steps,
and uniformly random initial phases. Each frame represents 100 steps.
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New dynamics: J = 3 Return

Figure: Distribution of phases versus natural frequencies. This
simulation used our setup with an interaction-vector based coupling and
Cauchy distributed natural frequencies. Here, N = 2500, K = 6, J = 3
and using a fourth-order Runge-Kutta integration with a step size of
0.01, 3600 recorded steps, and uniformly random initial phases. Each
frame represents 100 steps.
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New dynamics: J = 3 Return

Figure: Combination of all other videos. This simulation used our setup
with an interaction-vector based coupling and Cauchy distributed natural
frequencies. Here, N = 2500, K = 6, J = 3 and using a fourth-order
Runge-Kutta integration with a step size of 0.01, 3600 recorded steps,
and uniformly random initial phases. Each frame represents 100 steps.
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Local Fields Return

Figure: Radial distribution of local fields. Each curve represents the
averaged density over 500 simulations of Eq. (1), using N = 250, K = 4,
fourth-order Runge-Kutta integration with a step size of 0.01, 1000
transient steps, 2000 recorded steps, and uniformly random initial phases.
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Figure: Radial distribution of local fields. Each curve represents the
averaged density over 500 simulations of Eq. (1), using N = 250, K = 4,
fourth-order Runge-Kutta integration with a step size of 0.01, 1000
transient steps, 2000 recorded steps, and uniformly random initial phases.
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Figure: Oscillator phase distributions below and above the volcano
transition. In (a), J = 1; in (b), J = 3. Each panel shows results for
simulations of N = 2000 and K = 6; other parameters as in Fig. 35. (a)
Below the volcano transition, the system is incoherent. (b) Above the
volcano transition, phase-locked clusters appear.
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Convegrence to JC = 2 Return

Figure: Critical value Jc versus N and K . Each value of Jc was
estimated by using a bisection method on the value of M+1M−1 to
achieve an accuracy of . 0.02. For each J we sample Jjk at least 100
times, simulate Eq. (1), evaluate M+1M−1, and keep track of the running
standard deviation of these products. If the current value of M+1M−1 is
more than 1.5 standard deviations from 1.4694, the bisection continues;
otherwise further simulations are run, up to a maximum of 105

simulations. Each simulation consists of 1000 transient steps followed by
2000 recorded steps of a fourth-order Runge Kutta integration with a
step size of 0.01, with initial phases all set to 0.
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Algebraic decay? Return

Figure: Log-log plot for the decay of the order parameter Z (t). Each
curve is the average of 750 numerical integrations of Eq. (1) for
N = 5000 oscillators starting from the in-phase state (θj = 0 for all j)
and run for 1000 steps with a step size of 0.01. Solid curves show
coupled systems with J = 10; dashed curves show uncoupled systems
with J = 0 for which the order parameter decays exponentially:
Z (t) = e−t . Simulation ran in the low-rank regime: K � log2(N). For
K = 2, Z (t) decays exponentially down to the noise floor. Exponential
decay is expected in this regime because the dynamics of Eq. (1) are well
approximated by the low-dimensional system (4).
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Figure: Log-log plot for the decay of the order parameter Z (t). Each
curve is the average of 750 numerical integrations of Eq. (1) for
N = 5000 oscillators starting from the in-phase state (θj = 0 for all j)
and run for 1000 steps with a step size of 0.01. Solid curves show
coupled systems with J = 10; dashed curves show uncoupled systems
with J = 0 for which the order parameter decays exponentially:
Z (t) = e−t . (a) Low-rank regime: K � log2(N). For K = 2, Z (t)
decays exponentially down to the noise floor. Exponential decay is
expected in this regime because the dynamics of Eq. (1) are well
approximated by the low-dimensional system (4). (b) High-rank regime:
K = N = 5000. When K = O(N) and J > Jc , the relaxation of Z slows
markedly, resembling the algebraic decay in glass.
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Z (t) = e−t . (a) Low-rank regime: K � log2(N). For K = 2, Z (t)
decays exponentially down to the noise floor. Exponential decay is
expected in this regime because the dynamics of Eq. (1) are well
approximated by the low-dimensional system (4). (b) High-rank regime:
K = N = 5000. When K = O(N) and J > Jc , the relaxation of Z slows
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