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Appendix A: Independence of entries of Jj,k.

Proposition: Nontrivial pairs of entries of

Jjk =
J

N

K∑
m=1

(−1)mu(j)m u(k)m ,

are independent, given all the u
(j)
m are ±1 with equal probability.

Proof: We are going to ignore comparing Jjk with Jkj , since the enforced symmetry makes these always
equal, and thus trivially dependent. We will also avoid comparing any entry with Jjj , since the entire
diagonal is always 0, so independence is trivial.

Comparing Jjk with Jlp is likewise trivial, given j, k, l, p all distinct – they represent independent sums of
independent random variables, so independence is assured.

The only case which is potentially nontrivial is comparing Jjk with Jjl, given j, k, l all distinct. The cases
of Jjl vs. Jkj , Jlj vs. Jjk, and Jlj vs. Jkj are redundant, due to matrix symmetry.

To show independence of Jjk with Jjl, we directly compute the joint probability, which is

P := P

(
N

J
Jjk = 2x−K and

N

J
Jjl = 2y −K

)
= P

(
K∑
m=1

(−1)mu(j)m u(k)m = 2x−K and

K∑
m=1

(−1)mu(j)m u(l)m = 2y −K

)
.

To simplify our terminology, we define am := (−1)mu
(j)
m , bm := u

(k)
m , cm := u

(l)
m . Each of a, b, and c are

independent sequences of independent random variables, each with equal probability of being ±1. Therefore,
each can be thought of as a fair K-long coinflip sequence of +1’s and −1’s.

P = P

(
K∑
m=1

ambm = 2x−K and

K∑
m=1

amcm = 2y −K

)
= P ( coinflip sequence a agrees with b x times and with c y times )

From here, it is obvious that because a, b, and c are independent, the joint probability becomes

P =

(
K

x

)(
K

y

)
2−2K

= P

(
N

J
Jjk = 2x−K

)
P

(
N

J
Jjl = 2y −K

)
.

Therefore, independence is assured.

Appendix B: Using the Ott-Antonsen ansatz (I)

Here, we will expand on manipulations that start with the Ott-Antonsen ansatz,

f(θ, ω, u, t) =
1

2π

[
1 +

∞∑
n=1

α(ω, u, t)neinθ + c.c.

]
,
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and the dynamics

ν(θ, ω, u, t) = ω +
1

2i

[
e−iθP (u, t)− eiθP ∗(u, t)

]
,

and end with the ODE

ȧ(u, t) = −a(u, t) +
P ∗(u, t)− a(u, t)2P (u, t)

2
.

Because we are working in a continuum limit, our main step will be applying the following continuity
equation:

−ft = (fν)θ.

First, we evaluate the left-hand side by inserting the Ott-Antonsen ansatz, namely

−ft =∂t
−1

2π

[
1 +

∞∑
n=1

α(ω, u, t)neinθ + c.c.

]

=
−1

2π

∞∑
n=1

(
nα̇αn−1einθ + nα̇∗α∗n−1e−inθ

)
To evaluate the right-hand side, we first product our ansatz with the dynamics to get

fν =
1

2π

[
1 +

∞∑
n=1

αneinθ + α∗ne−inθ

] [
ω +

1

2i

(
e−iθP − eiθP ∗

)]
=

1

4πi
[2ωi+ αP − α∗P ∗]

+
1

4πi

∞∑
n=1

(
2ωiαn + αn+1P − αn−1P ∗

)
einθ

+
1

4πi

∞∑
n=1

(
2ωiα∗n − α∗n+1P ∗ + α∗n−1P

)
e−inθ.

Meaning that the right-hand side evaluates to

(fν)θ =
1

4πi

∞∑
n=1

(in)
(
2ωiαn + αn+1P − αn−1P ∗

)
einθ

+
1

4πi

∞∑
n=1

(−in)
(
2ωiα∗n − α∗n+1P ∗ + α∗n−1P

)
e−inθ.

From here, it is just a matter of seeing ft + (fν)θ = 0 and setting Fourier coefficients to be equal. So

α̇ = −ωαi+
P ∗ − α2P

2
.

To obtain the exact ODE from the start of this section, we use a result from the next section. In particular,
the calculation of P (u, t) reveals it only depends on α(−i, u, t). So by setting ω = −i and a(u, t) := α(−i, u, t),
we finally get

ȧ(u, t) = −a(u, t) +
P ∗(u, t)− a(u, t)2P (u, t)

2
.
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Appendix C: Using the Ott-Antonsen ansatz (II)

Here, we will elaborate on how the local field

P (u, t) = 〈J(u, u′)eiθ
′
〉

becomes

P (u, t) =
J

2K

∑
u′

K∑
m=1

(−1)mumu
′
ma
∗(u′, t)

under the Ott-Antonsen ansatz.
The first step is to insert the Ott-Antonsen ansatz into the integral to get

P (u, t) =

∫
J(u, u′)eiθ

′
f(θ′, ω′, u′, t)g(ω′)ρ(u′)dθ′dω′du′

=

∫
J(u, u′)

2π

[
eiθ
′
+

∞∑
n=1

αnei(n+1)θ + α∗ne−i(n−1)θ

]
g(ω′)ρ(u′)dθ′dω′du′.

By taking the integral over θ, everything but the n = 1 term of the sum evaluates to 0. So

P (u, t) =

∫
J(u, u′)α∗g(ω′)ρ(u′)dω′du′.

Next, we want to take the ω′ integral. Since we are using a Cauchy distribution, then

g(ω) =
1

π(a+ ω2)
=
i/(2π)

ω + i
+
−i/(2π)

ω − i
.

So if α has the appropriate smoothness and decay (see ref [1] for more details), then the integrand has exactly
two poles, one at each of ±i. So, by taking the appropriate contour integral (i.e., one which runs around
across the real line and semicircles around in the bottom half-plane), we get

P (u, t) =

∫
J(u, u′)

(∫
α∗(ω′, u′, t)g(ω′)dω′

)
ρ(u′)du′

=

∫
J(u, u′)

(
−2πi

i

2π
α∗(−i, u′, t)

)
ρ(u′)du′

=

∫
J(u, u′)a(u′, t)ρ(u′)du′,

where a(u, t) := α(−i, u, t). Incidentally, this is why the last section involves an evaluation of ω = −i.
From here, all we need to do is just plug in for J(u, u′), recalling that ρ(u′) = 2−K

∑
v δ(u

′−v). Therefore,

P (u, t) =

∫
J(u, u′)a(u′, t)ρ(u′)du′

=
J

2K

∑
u′

K∑
m=1

(−1)mumu
′
ma
∗(u′, t),

completing the section.

Appendix D: ζ
(n)
v as eigenvectors

Proposition: Given K even and using indices u, v ∈ {±1}K , then for any n ∈ {1, . . . ,K}, then

ζ(n)v = vn
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is an eigenvector of

Auv =

K∑
m=1

(−1)mumvm.

Proof: This will be attacked directly. Let us fix some n ∈ {1, 2, . . . ,K} and u ∈ {+1,−1}K . So

(
Aζ(n)

)
u

=
∑
v

Auvζ
(n)
v =

∑
v

(
K∑
m=1

(−1)mumvm

)
vn

=

K∑
m=1

∑
v

(−1)mumvmvn

=
∑
v

(−1)nunvnvn +
∑
m 6=n

∑
v

(−1)mumvmvn

= Term 1 + Term 2,

where each “Term” will be simplified on its own.
The first term reduces rather quickly, as in

Term 1 =
∑
v

(−1)nunvnvn

= (−1)nun
∑
v

v2n

= (−1)n2Kun.

The second term is somewhat more complicated, where we reduce it into

Term 2 =
∑
m 6=n

∑
v∈{±1}K

(−1)mumvmvn

=
∑
m

∑
v′∈{±1}K−1

u′mv
′
m,

where the u′ and v′ are n-deleted versions of (−1)mum and vmvn specifically. However, this means that
evaluating this term becomes a matter of just counting the number of places two vectors u′ and v′ of length
K − 1 disagree, across all possible v′. So, combinatorically, it becomes

Term 2 =2

K−1∑
w=0

(K − 1− 2w)

(
K − 1

w

)
.

However, this becomes the sum across an odd function across K/2 (using the evenness of K), so this term
immediately evaluates to 0.

Therefore, (
Aζ(n)

)
u

= Term 1 + Term 2

= (−1)n2Kun + 0

= (−1)n2Kun.

This holds for all u, so for all n we have

Aζ(n) = (−1)n2Kζ(n).
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Appendix E: Demonstration of nullspace of A

Proposition: Using the same setup as the previous section,

η ⊥ ζ(n) for all n

implies

Aη = 0.

Proof: Let us choose some η orthogonal to all ζ(n). Then for any n = 1, 2, . . . ,K, we have

ηζ(n) = 0.

Therefore, by direct computation,

(Aη)u =
∑
v

Auvηu =
∑
v

K∑
m=1

(−1)mumvmηu

=

K∑
m=1

(−1)mum
∑
v

vmηu =

K∑
m=1

(−1)mum

(
ηζ(n)

)
=

K∑
m=1

(−1)mum0 = 0.

So Aη = 0.

Appendix F: Demonstration of concavity

Proposition: The sum of symmetric normals centered at ±µ with individual variances σ2, that is,

h(r) =
2√

2πσ2
exp

(
−µ2 − r2

2σ2

)
cosh

(µr
σ2

)
,

is concave down at the origin whenever µ2/σ2 < 1 and concave up at the origin whenever µ2/σ2 > 1.

Proof: Letting γ := µ2/σ2 and β := µ/σ2, the distribution becomes

h(r) =
2β√
2πγ

exp

(
−γ
2

)
exp

(
−r2β2

2γ

)
cosh (rβ) .

From here direct computation reveals

∂2rh(r) =β3γ−2 exp

(
−γ
2
− β2r2

2γ

)√
2

πγ
cosh(βr)

[
−γ + γ2 + β2r2 − 2βγr tanh(βr)

]
.

Evaluating therefore gives

∂2rh(0) = β3γ−1 exp (−γ/2)

√
2

πγ
(γ − 1) .

So h is concave down whenever γ < 1 and concave up whenever γ > 1.
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Appendix G: Derivation of M+1M−1

Proposition: The product of the first and negative first moments of the fitted 2D radial distribution is

M+1M−1 =
π

2

1 + γ

[e−γ/2 +
√
πγ/2Erf(

√
γ/2)]2

where γ = µ2/σ2.

Proof: The distribution in question we plan on using is

h(r) =
2√

2πσ2
exp

(
−µ2 − r2

2σ2

)
cosh

(µr
σ2

)
,

for r ≥ 0. We start by defining

µn :=

∫ ∞
0

rnh(r)dr.

By direct computation, and by setting β = µ/σ2, we get

µ0 = 1,

µ1 = e−γ/2
√

2γ

π

1

β
+
γ

β
Erf

(√
γ

2

)
,

µ2 =
γ2 + γ

β2
.

However, notice that h(r) is just a 1D density on (0,∞). To get the 2D distribution which we will be
sampling from, we need to rotate it and renormalize. So the “true” distribution we are sampling is closer to

H(x, y) :=
h
(√

x2 + y2
)

2πµ1
,

since it has the correct radial behavior, is rotationally symmetric, and is properly normalized on the plane.
So the moments we are numerically observing are simply

Mn =

∫ ∫
H(x, y)

(√
x2 + y2

)n
dxdy

=

∫ ∫
rn

h(r)

2πµ1
rdrdθ

=
µn+1

µ1
.

By plugging in our earlier computations, we therefore get the first and negative first moments to be

M−1 =
µ0

µ1
=

β

e−γ/2
√

2γ
π + γErf

(√
γ
2

)
M+1 =

µ2

µ1
=

(γ2 + γ)/β

e−γ/2
√

2γ
π + γErf

(√
γ
2

) .
All the β dependency cancels out, so we get the desired expression:

M+1M−1 =
π

2

1 + γ

[e−γ/2 +
√
πγ/2Erf(

√
γ/2)]2

.
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Appendix H: Numerically estimating M+1M−1

Because it was left somewhat ambiguous in the main body, we will take a second to clarify how the product
of the first and negative first moments M+1M−1 is numerically estimated.

Given the time-history of a single simulation run, we estimate individual moments from numerically
obtained values of

Pj(t) = xj(t) + iyj(t) :=

N∑
k=1

Jjk (cos(θk(t)) + i sin(θk(t))) ,

by averaging over all N fields and over the sampling window T . So

M+1 ≈
1

NT

N∑
j=1

T∑
t=1

√
xj(t)2 + yj(t)2

M−1 ≈
1

NT

N∑
j=1

T∑
t=1

√
xj(t)2 + yj(t)2

−1

in particular. We then run L independent simulations, with randomized initial phases, natural frequencies,
and coupling matrices. We obtain averaged values of the desired moments by

E[M+1] = µ+1 ≈
1

L

L∑
l=1

M
(l)
+1

E[M−1] = µ−1 ≈
1

L

L∑
l=1

M
(l)
−1.

However, notice

E[M+1M−1] 6= µ+1µ−1.

This is because the first and negative first moments are not independent, so we run a separate average to
get the moment product, so

E[M+1M−1] ≈ 1

L

L∑
l=1

M
(l)
+1M

(l)
+1.

To establish error, we will also need to calculate the error on this average moment product. Via standard
real-time methods, we can calculate Var (M±1) = σ2

±1. Properly calculating the variance on M+1M−1, is a
bit more algebraically involved, but it can be shown that

Var (M+1M−1) ≈ 1

L

[
µ2
+1σ

2
−1 + µ2

−1σ
2
+1 + 2µ+1µ−1Cov (M+1,M−1)

]
+O

(
1

L2

)
.

The covariance term also be calculated via standard methods, and the L−2 term can be neglected given
a sufficient number of replications. This establishes all the numerical tools needed to estimate M+1M−1 in
any specific parameter combination.

Appendix I: Is M+1M−1 monotone in γ?

Proposition:

M+1M−1 =
π

2

1 + γ

[e−γ/2 +
√
πγ/2Erf(

√
γ/2)]2
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FIG. 1: Plot of M+1M−1 versus γ. Dashed lines denote γ = 1 and M+1M−1 ≈ 1.4694.

is monotone on γ ≥ 0, allowing us to use bisection on numerically obtained moments to estimate JC .

Proof: To make things simpler, we define a function f(γ) where

π

2f(γ)2
=
π

2

1 + γ

[e−γ/2 +
√
πγ/2Erf(

√
γ/2)]2

= M+1M−1.

This is allowed since M+1M−1 ≥ 0 always. Notice that M+1M−1 is monotone on γ ≥ 0 if and only if f is
monotone. So we want to show

f(γ) =
e−γ/2 +

√
πγ/2Erf(

√
γ/2)√

1 + γ

is monotone on γ ≥ 0. This is equivalent to asking if

f ′(γ) =

√
π/(8γ)

(1 + γ)3/2

(
Erf

(√
γ

2

)
−
√

2γ

π
e−γ/2

)

single signed. However, recall

Erf

(√
γ

2

)
=

∫ √γ/2
0

2√
π
e−t

2

dt,

and √
γ

2
e−γ/2 =

∫ √γ/2
0

e−t
2

− 2t2e−t
2

dt.

Therefore,

f ′(γ) =

√
π/(8γ)

(1 + γ)3/2

(∫ √γ/2
0

2√
π
e−t

2

dt− 2√
π

∫ √γ/2
0

e−t
2

− 2t2e−t
2

dt

)

=

√
π/(8γ)

(1 + γ)3/2

∫ √γ/2
0

4√
π
t2e−t

2

dt

≥0.

Therefore M+1M−1 is monotone in γ. A plot of this function is provided in figure 1.
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FIG. 2: Radial distribution of local fields. Each curve represents the averaged density over 500
simulations of Eq. (J1), using N = 250, K = 4, fourth-order Runge-Kutta integration with a step size of

0.01, 2000 transient steps, 4000 recorded steps, and uniformly random initial phases. (a) Coupling given by
f(x) = sin(x) and natural frequencies are distributed according to a standard Cauchy. (b) Coupling given

by f(x) = sin(x) and natural frequencies are distributed according to a standard normal. (c) Coupling
given by f(x) = 0.9 sin(x) + 0.1 cos(x) and natural frequencies are distributed according to a standard
Cauchy. (d) Coupling given by f(x) = 0.9 sin(x) + 0.1 cos(x) and natural frequencies are distributed

according to a standard normal.

Appendix J: Generality of volcano transitions

To see if our model robustly supports volcano transitions, we use

θ̇j = ωj +

N∑
k=1

Jjkf (θk − θj) (J1)

as a generalization, where f is some 2π-periodic coupling function, the natural frequencies ωj are distributed
according to a density g, and the entries of Jjk are defined as in the main paper. Figure 2 demonstrates the
existence of a volcano transition for various choices of f and g. Figure 2a recreates the setup in the main
paper, with sine coupling and standard Cauchy natural frequencies. Figure 2b demonstrates the case with
sine coupling and standard normal natural frequencies. Figure 2c recreates the setup in the main paper,
with coupling given by f(x) = 0.9 sin(x) + 0.1 cos(x) and standard Cauchy natural frequencies. Figure 2d
recreates the setup in the main paper, with coupling given by f(x) = 0.9 sin(x) + 0.1 cos(x) and standard
normal natural frequencies. Notice how in all these cases, the density at the origin goes from concave down
to concave up as J passes some critical value.
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FIG. 3: Distribution of average frequencies. Each curve represents a sampled density of average
frequencies of the system presented in the main text, using N = 500, fourth-order Runge-Kutta integration
with a step size of 0.01, 5000 transient steps, 1000 recorded steps, and uniformly random initial phases. (a)

K = 2 and J = 1. (b) K = 2 and J = 4. (c) K = 500 and J = 1. (d) K = 500 and J = 4.

Appendix K: Existence of locked population

One common requirement for oscillator glasses is to demand the existence of a substantial locked population
of oscillators. To measure this, we numerically compute the density of average frequencies < θ̇j >, and plot
the results in figure 3. Figure 3a shows the distribution at low K, below the volcano transition, and displays
no substantial locking. Figure 3b shows the distribution at low K, above the volcano transition, and exhibits
a substantial locked population. Figure 3c shows the distribution at high K, below the volcano transition,
and displays no substantial locking. Figure 3d shows the distribution at high K, above the volcano transition,
and exhibits a substantial locked population. This is consistent with the observation that high K (relative
to N) may correspond to the onset of a glass.
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FIG. 4: Distribution of phases. Each curve represents a sampled density of the system presented in the
main text, using N = 500, fourth-order Runge-Kutta integration with a step size of 0.01, 7500 transient

steps, and uniformly random initial phases. (a) K = 2 and J = 1. (b) K = 2 and J = 4. (c) K = 500 and
J = 1. (d) K = 500 and J = 4.

Appendix L: Persistence of incoherence

One common requirement for oscillator glasses is to demand that the phases of the oscillators be distributed
uniformly. To measure this, we numerically compute the density of the phases θj , and plot the results in
figure 4. Figure 4a shows the distribution at low K, below the volcano transition, and displays a uniform
distribution. Figure 4b shows the distribution at lowK, above the volcano transition, and exhibits substantial
locking. Figure 4c shows the distribution at high K, below the volcano transition, and displays a uniform
distribution. Figure 4d shows the distribution at high K, above the volcano transition, and displays a
uniform distribution. This is consistent with the observation that high K (relative to N) may correspond to
the onset of a glass, whereas low K definitely does not.
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FIG. 5: Trajectory of phase differences. Each curve represents the difference between θ0 and θ1 of the
system presented in the main text, using N = 500, fourth-order Runge-Kutta integration with a step size of

0.01 across 2000 steps, using uniformly random initial phases. The only difference between solid and
dashed line in (a) (as well as in (b)) is the initial phases – the natural frequencies and coupling matrix

remained identical. (a) K = 2 and J = 4. (b) K = 500 and J = 4.

Appendix M: Nonuniqueness of phase differences

Another common criterion for oscillator glasses is for there to be an abundance of attractors. One test of
this is to test sensitivity to initial phases. That is, given a fixed pattern of natural frequencies and coupling
strengths, and given locking oscillators θ0 and θ1, does the phase difference θ0 − θ1 depend on the choice of
initial phases? Figure 5a suggests that different initial phases lead to the same asymptotic behavior in the
low-K regime. However, figure 5b suggests a lack of any convergence in the high-K regime, consistent with
the onset of glass.

[1] E. Ott and T. M. Antonsen, Chaos 18, 037113 (2008) .
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