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Seascape origin of Richards growth
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First proposed as an empirical rule over half a century ago, the Richards growth equation has been frequently
invoked in population modeling and pandemic forecasting. Central to this model is the advent of a fractional
exponent γ , typically fitted to the data. While various motivations for this nonanalytical form have been
proposed, it is still considered foremost an empirical fitting procedure. Here, we find that Richards-like growth
laws emerge naturally from generic analytical growth rules in a distributed population, upon inclusion of (i)
migration (spatial diffusion) among different locales, and (ii) stochasticity in the growth rate, also known as
“seascape noise.” The latter leads to a wide (power law) distribution in local population number that, while
smoothened through the former, can still result in a fractional growth law for the overall population. This
justification of the Richards growth law thus provides a testable connection to the distribution of constituents
of the population.
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I. INTRODUCTION

The mathematical description of growing populations has
been an enduring topic of interest. There is presently a great
diversity of population growth models [1–3], which have been
applied in a wide variety of contexts, including epidemiology
[4,5], forestry [6], developmental biology [7], cancer [2], im-
munology [8–11], and many others.

One such model of interest is the Richards equation. Orig-
inally developed as an empirical model of plant development
[6,12–14], and later used as a population growth model [15],
it has over the last year exploded in popularity, becoming a
consistent presence in the modeling of infectious diseases,
especially in COVID-19 forecasting [4,16–23].

The Richards model is described by

dy

dt
= μy − ayγ , (1)

where y is a measure of the population size, μ is the ini-
tial growth rate (sometimes referred to as the population
fitness), and a sets the final (saturation) population to y f =
(μ/a)1/(γ−1). The feature that distinguishes this from the cel-
ebrated and more natural Verhulst logistic equation [24] is the
nonanalytic (shape) parameter γ > 1. When γ = 2, a logistic
equation is retrieved, but for any other value, the inflection
point of the growth curve becomes off-center, leading to
asymmetric growth curves, as shown in Fig. 1.

This shape parameter γ indeed gives the Richards equation
character, but its meaning beyond a fitting device is myste-
rious. Because γ takes on fractional values, this makes the
dynamics of Richards growth nonanalytic, making its origins
theoretically nontrivial. Although there have been proposed
derivations of Richards-like growth, they have either leaned
on an underlying fractal topology [19,25,26], or relied on a de-
tailed manipulation of an susceptible infected recovered (SIR)

model, which may not be robust under model perturbation
[18,27]. In practice, Richards growth is still considered an
empirical law and lacks a fully universal origin, or a physically
intuitive interpretation of the shape parameter γ .

In this paper, we propose a plausible origin for emer-
gence of Richards-like growth in distributed populations from
generic local analytical forms. Specifically, we shall use the
Fisher equation as a starting point. The deterministic Fisher
equation [28–32] is one of the most basic models of spatial
population growth, written as

dy(x, t )

dt
= μy − ay2 + D∇2y. (2)

This is distinguished from a logistic equation by the presence
of a spatial coordinate x and a diffusion term D which sets the
rate of local migration.

The deterministic Eq. (2) should in principle include repro-
ductive stochasticity. While there are many kinds of random-
ness that may influence population growth (e.g., demographic
noise, with amplitude proportional to

√
y [33–38]), we are

interested in what is called seascape noise [39–48]. This noise
arises from observing that the fitness μ of a population is
not necessarily a static, uniform quantity. Population fitness
can vary based on minor environmental conditions, access to
resources, microscopic mutation rates, and other such factors.
So we generalize from a static fitness landscape μ(x) to one
that varies in time μ(x, t ), much as the sea surface changes in
time.

By introducing seascape noise into the Fisher equation, we
obtain the seascape Fisher equation,

dy = (μy − ay2 + D∇2y)dt + σydW, (3)

with σ 2 being the variance of the fitness noise, and dW =
dW (x, t ) is an uncorrelated Wiener process. While our
noise will be uncorrelated, we should note that in certain
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applications we may wish to consider more spatially cor-
related environmental variations [49–52]. Moreover, we
consider this stochastic differential equation under an Itô in-
terpretation, since its assumptions pair well with the fact that
generations in a population are discrete, though interesting
seascape results exist for alternate interpretations [53–55].
And while interesting traveling wave solutions to equations
of this type exist [28,32], we will restrict our study to initial
conditions which are uniform across space.

Since both the Fisher equation and seascape noise are very
versatile concepts, this makes their combination in Eq. (3)
similarly adaptable. Variants of this much-studied model
[56–59] have connections to the Kardar-Parisi-Zhang equa-
tion in the field of surface growth problems [60–68], the study
of directed polymers in random media [56–59], symmetry
breaking [69–71], theoretical ecology [35,72–76], immunol-
ogy [77], and economics [78].

In this work, we argue that spatially averaging the seascape
Fisher equation is sufficient to produce Richards-like growth
curves. In Sec. II we introduce a discretization of the model,
replacing y(x) with yi for locations (nodes) i = 1, . . . , N . In
the context of this model diffusion between neighboring sites
can be replaced with migration between any pair of sites at
rates Mi j . A mean-field limit is then obtained if migration
rates are equal between any pair of sites (Mi j = D/N). This
limit was considered by us [79] in the context of population
extinction, and similar models are used by others in differ-
ent contexts [69,70,77,80,81]. The steady (long-time) limit
of the probability distribution ρ(y) can be obtained exactly
in this mean-field limit, and is characterized by a power-law
distribution. A wide power-law distribution, characterized by
nonanalytic dependencies of its moments, suggests a natu-
ral route for obtaining Richards-like growth. Unfortunately,
we could not solve the full dynamic behavior of the model,
even in the mean-field limit. As an alternative, in Sec. III we
introduce a model which alternates the linear and nonlinear
parts of the model. This seasonal growth model retains the
features of seascape stochasticity and migration which we
believe are the cause of Richards growth, and (with some
assumptions) is exactly solvable; numerical simulations con-
firm these expectations. In Sec. IV we consider a number
of extensions: providing a procedure for testing the model
by examining the dependence of the second moment on the
mean (Sec. IV A); indicating the universality of the results for
generalized growth equations (Sec. IV B); numerical studies
of the seascape Fisher equation in one and two dimensions
(Sec. IV C); and finally indicating the appearance of Gompertz
growth in the strong noise limit (Sec. IV D). The concluding
Sec. V provides an overview, and outlook for future studies.

II. MEAN-FIELD STEADY STATE

The intuition for why seascape noise is a viable mechanism
for Richards growth comes from earlier studies of a mean-
field version of the problem. We begin with the full seascape
Fisher equation Eq. (3) in d spatial dimensions. We discretize
space into N lattice sites with unit spacing indexed by i =
1, 2, . . . , N − 1 with periodic boundary conditions. The field
y(x, t ) is replaced by a single value at each lattice site, y(x =
i, t ) → yi(t ). The Laplacian on this lattice takes the form of

a migration rate Mi j giving the rate of migration from site j
to i. For example, on a regular one-dimensional lattice, Mi j =
δi+1, j + δi−1, j − 2δi j . The discretized version of the stochastic
Fisher equation now takes the form

dyi =
(

μyi − ay2
i +

∑
j

Mi jy j

)
dt + σyidWi. (4)

One can use the above equation and generalize the matrix Mi j

to any migration connectivity network. We then proceed to
take the mean-field limit by using a complete graph, defining
Mi j = D/N , corresponding to a population that can migrate
with “steps” of arbitrary length.

The stochastic Fisher equation in the mean-field case now
takes the simple form

dyi = (
μyi − ay2

i + D(ȳ − yi )
)
dt + σyidWi, (5)

where ȳ is the spatial average of y [82]. The steady state
(long-time) behavior of this stochastic ordinary differential
equation is obtained as the stationary solution of a correspond-
ing Fokker-Planck equation (see Ref. [79] and Sec. III A), and
is proportional to

ρ(y) ∝ e−cDȳ/yy−2−cD+cμe−cay, (6)

where cD = 2D/σ 2, cμ = 2μ/σ 2, ca = 2a/σ 2. In the limit
N → ∞ we can identify ȳ = 〈y〉 as a parameter to be found
self-consistently [69,70,79–81,83]. The steady state distribu-
tion thus has a power-law with upper and lower cutoffs of c−1

a
and cDȳ respectively. Distributions of this form give rise to
anomalous scaling in the moments, which we conjecture as
the mechanism for Richards growth.

Demanding that ȳ be the mean of this distribution implies
the self-consistency condition

ȳ =
∫

yρ(y) dy∫
ρ(y) dy

. (7)

By manipulating this condition [79], we arrive at a moment
scaling relationship of

〈y2〉 ∝ 〈y〉1+min(cD−cμ,1). (8)

Thus, for 0 < cD − cμ < 1 we have that the second moment
scales with the first moment as 〈y2〉 ∼ ȳ1+cD−cμ , while for
cD − cμ > 1, we have a more typical scaling 〈y2〉 ∼ ȳ2. This
anomalous scaling in steady state is what motivated our hy-
pothesis for Richards growth. However, absent a solution of
the time-dependent Fokker-Planck equation, we cannot iden-
tify parameter regimes where the previous scaling holds away
from steady state. As such, we introduce a seasonal model that
allows us to take advantage of the results of this section.

A justification for employing the steady-state solution in a
dynamic setting comes from the case of population decay for
μ = 0: If we take the scaling, 〈y2〉 ∝ 〈y〉1+min(cD,1), from the
stationary state, and assume that it is maintained quasistat-
ically during the decay process, we can make a prediction
for the decay of the mean. In particular, ∂t 〈y〉 = −a〈y2〉 ∝
−〈y〉1+cD , indicates that the mean should scale as t−1/cD . The
numerical results, plotted in Fig. 2, indicate a power-law de-
cay roughly consistent with this quasistatic approximation.
A similar argument is made in Ref. [84] where power law
decays as in Fig. 2 are demonstrated. To avoid problems with
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FIG. 1. Schematic illustration of a Richards versus logistic
growth laws. The solid blue lines demonstrate a typical logistic
growth curve, here with growth rate μ = 1. The dashed red lines
show a Richards growth curve, here with an exponent γ = 1.1, and
a selected so that the saturation values are matched for illustrative
purposes. Panel (a) shows the time courses for the two equations, and
(b) shows how their growth rates change with population size. Notice
how the inflection point in the Richards equation comes much earlier
than that of the logistic equation.

the quasistatic assumption during growth, we next introduce a
two-state model next that allows us to more controllably take
advantage of this solution.

III. SEASONAL GROWTH MODEL

The combination of nonlinearity and stochasticity compli-
cates the study of Eqs. (3) and (5). To simplify analysis while
maintaining the qualitative features we believe to be responsi-
ble for the Richards form, we separate nonlinear growth and
stochastic migration. To do so, we introduce a seasonal growth
model composed of two distinct stages:

(1) Exploration. The exploration phase (season) has the
population diffusing in the presence of seascape noise, as

FIG. 2. Decay of mean-field model Eq. (5) in the case of μ = 0.
The blue circles show the numerically simulated decay of the mean,
here with a = 1, D = 0.8, σ 2 = 2, N = 220, and dt = 0.01. The
dashed red line shows a fitted power law to the tail of the decay.
Notice that the fitted power law is around −1.34, and is slightly
different than the predicted value of −1/cD = −1.25.

described by

dy = D∇2ydt + σydW.

In the mean-field limit, D∇2y is replaced by D(ȳ − y), where
ȳ = 〈y〉 at the start of the exploration phase. The exploration
phase is run for a time Te with DTe 
 1.

As these dynamics conserve the mean, ȳ can be treated as
a constant. In the absence of reproduction in the exploratory
phase, a new interpretation for seascape noise is necessary.
A potential cause is random extinctions of the populations
at different locales and times. In this interpretation, the noise
must have a negative mean, and 〈y〉 will decrease through the
process. For a large enough population (to avoid the possi-
bility of extinction) this overall loss can be restored in the
subsequent growth stage, without qualitatively changing the
results.

(2) Growth. Even when starting with a uniform distri-
bution of numbers at each node, the stochasticity in the
exploratory phase leads to a broad distribution of yi at the
end of this interval. In the subsequent growth phase, at each
node we implement reproductive growth following the logistic
equation,

∂t yi = μyi − ay2
i ,

for a short time Tg where μTg � 1.
Equation (2) is deterministic, and can easily be solved to

give the final population at each node in terms of the initial
value. The exact form of the equation governing growth and
saturation is not important, and as discussed in the following,
any analytical form leads to similar results.

We alternate between exploration and growth for a large
number of times (seasons) to generate trajectories for the
moments of the population mn(t ) = 〈y(t )n〉.

A. Stochastic exploration

In the exploration phase of the mean-field model, the dis-
tribution of y evolves according to the Fokker-Planck equation

∂tρ = −∂y

[
D(ȳ − y) − σ 2

2
∂y(y2ρ)

]
. (9)

The stationary steady state solution is found by demanding a
vanishing probability flux, and is proportional to

ρ(y) ∝ e−cDȳ/yy−2−cD , (10)

which has the advertised structure of a power law with cD =
2D/σ 2, and a lower cutoff set by cDȳ. Power laws arising
from models with seascape noise are quite common, so this is
well precedented [8,35,77,85–88]. However, the continuous
variation of the exponent with the ratio cD is unusual and
likely a feature of the mean-field limit, though some similarly
continuous nonuniversal exponents have also appeared in di-
rected percolation under temporal disorder [89,90].

However, the steady state solution is only valid in the limit
Te → ∞; for any finite Te, the power-law tail will not extend
to infinity, and higher moments will not diverge (see Appendix
C). In addition, expansion and growth occur simultaneously
in the original seascape Fisher equation, making the estab-
lishment of the full power-law tail implausible. Because of
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this, we also impose an upper cutoff � to this distribution,
simplifying it to

ρ(y) ∝ y−2−cD for ϒ < y < �, (11)

with ρ(y) = 0 otherwise. We have additionally imposed a
lower cutoff ϒ to ensure that the mean is equal to ȳ. For
0 < cD < 1, and as long as � 
 ϒ , the first moment of the
distribution is given by

〈y〉 ≈ 1 + cD

cD
ϒ, (12)

setting the lower cutoff to

ϒ = cD

1 + cD
ȳ. (13)

The second moment is now given by

〈y2〉 ≈ 1 + cD

1 − cD
�1−cDϒ1+cD ∝ 〈y〉1+cD . (14)

We emphasize here the importance of spatial migration,
as in its absence (by setting D = 0) the explicit dependence
of the dynamics on ȳ is removed. This removal disrupts the
anomalous scaling of Eq. (14) and thus our proposed mech-
anism for Richards growth. While finding 〈y〉 in the case of
D = 0 might be troublesome, here 〈1/ym〉 is exactly solvable
for all integer m � 1, and will generically follow exponential
trajectories in time.

B. Deterministic growth

Once the growth phase begins, the variable yi’s of nodes,
distributed according to Eq. (11), serve as initial conditions
for the logistic equation. For each node, the solution of the
logistic equation gives

yi(t ) = eμtμyi

ayi(eμt − 1) + μ
. (15)

Averaging over the initial conditions now leads to

〈y(t )〉 =
∫ �

ϒ

eμt μy
ay(eμt −1)+μ

ρ(y)dy∫ �

ϒ
ρ(y)dy

. (16)

While this integral can be approximated in detail (see Ap-
pendix B), as long as the growth phase only occurs for a small
time (μTg � 1) we can expand our result for the mean at the
end of the growth phase to O(Tg) and find

〈y(t + 	t )〉 = (1 + μ	t )〈y(t )〉 − a〈y2(t )〉	t . (17)

If we take advantage of the fact that � 
 ϒ , then we can take
advantage of the previously computed moments to obtain

	〈y(t )〉
	t

= μ〈y〉
[

1 − cD

1 − cD

a�

μ

(
cD〈y〉

(1 + cD)�

)cD
]
. (18)

Therefore, when we write the dynamics of the mean in the
growth phase, we have one term that scales as 〈y〉 and one term
that scales as 〈y〉1+cD , leading to nonanalytic, Richards-like
growth.

Upon iterating these dynamics at times t j = j(Te + Tg),
we find a population trajectory m1(t j ) = 〈y(t j )〉 governed by

FIG. 3. Simulation of the seasonal growth model. Blue circles
show the results of numerically solving the model over 175 cycles
of exploration and growth for N = 220 nodes. The dashed line is a
solution to the Richards equation with growth rate μ̃ and exponent cD

as calculated in the main text, and with a numerically found carrying
capacity. The simulation used μ = 1, a = 10−3, σ = √

2, D = 0.5,
� = 500, Tg = 0.1, and Te = 6.

approximate Richards law to leading order in time and ȳ/�,
of

dm1(t )

dt
= μ̃m1(t ) − ã(�)m1(t )1+cD + O

(
m1

2
)
, (19)

where μ̃ = 1
1+Te/Tg

μ is the effective growth rate and is cutoff
independent. The carrying capacity is set by ã(�) which is
some function of the cutoff and can be found numerically.
We confirm these results in Fig. 3 where we see excellent
agreement between the simulated mean population and the
analytical prediction. We also note that the numerical results
can also be reasonably fitted to a logistic sigmoid. However,
what is significant is that models such as Eq. (3) contain the
essential ingredients to analytically justify a Richards growth
law.

IV. GENERAL CONSIDERATIONS

In this section we test the generality and applicability of the
results from the seasonal model in a number of other contexts.

A. Dynamics of seascape mean field

In the seasonal model the nonanalytic form of Richards
growth emerged from the power-law character of the distri-
bution of local numbers, established from the combination of
migration and seascape noise in the exploration phase. In the
original model, and many likely realizations, growth and mi-
gration occur simultaneously, preventing formation of a well
defined quasistationary power-law distribution. This compli-
cated testing the foundation of our explanation of Richard’s
growth in terms of a relation between the growth exponent of
the distributed population and its distribution among different
locations.

To address these questions we simulated the full dynamics
of Eq. (5) for N = 220 nodes. The mean, 〈y〉 = m1, of this
distributed population grows in sigmoid fashion as depicted
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FIG. 4. Numerical simulation of the mean-field dynamics of
Eq. (5), for N = 220 nodes with μ = a = 1, σ = √

2, D = 1.2, and
dt = 1/120. The sigmoid curve in (a) is well fitted to a Richards
equation with shape parameter γ = 1.79. (Only times after 4/μ

were used to fit the Richards exponent.) Panel (b) shows the relation
between the first and second moments of the population on a log
scale. The dashed line shows the best fit power law m2 ∝ m1

γ .

in Fig. 4(a). In the absence of noise, with μ = a = 1, the
population would have saturated to μ/a = 1; seascape noise
reduces the saturation value to roughly 0.64. Allowing for
a variable Richards growth exponent, the sigmoid curve is
well fitted with a value of γ = 1.79. (Note that with the
simultaneous action of growth and diffusion, we do not ex-
pect γ = 1 + cD, with cD = 1.2 for the chosen parameters of
σ 2 = 2 and D = 1.2.)

Nonetheless, we can test whether something like our pro-
posed mechanism is at work by plotting the time evolution
of the second moment 〈y2〉 = m2 as a function of the first
〈y〉 = m1. As depicted in Fig. 4(b), at intermediate and late
times, we find m2 ∝ m1

γ – a straight line in the log-log plot
with a slope of γ = 1.79. Such log-log fits are a convenient
way to retrieve the growth exponent γ in models such as
these, and will be used throughout this paper. (The intercept
for the log-log line is also useful, and related to the carrying
capacity.)

Finding the first and second moments of a distributed popu-
lation in a natural setting should be easier than characterizing
the whole distribution. A relation such as 〈y2〉 ∝ 〈y〉γ , cou-
pled with a Richards fit to the growth curve of 〈y〉 with the
same exponent would provide a good test of the proposed
hypothesis.

B. Universality

The formulation of the model in terms of the logistic equa-
tion may give the impression that the obtained results are a
consequence of its quadratic form. There are in fact many
other analytic growth functions with saturation that gener-
ate sigmoid curves. The anomalous scaling, induced by the
heavy-tailed distributions attributed to spatial diffusion and
seascape noise, actually confers a universality to these results,
independent of the assumed growth equation. Let us consider
a generic analytical growth curve g(y) with an initial growth
rate μ that saturates to a carrying capacity y = K , which can

be written as

g(y) = μy
(

1 − y

K

)
f (y). (20)

The analytic function f (y), with f (0) = 1, alters the growth
away from the purely logistic case, and we will demand that
f (y) > 0 for all y to ensure the only fixed points of the local
growth are at y = 0 and y = K . This also guarantees that our
local dynamics given g(y) only have simple (nonrepeated)
roots.

We will again demonstrate how such a generalized model
behaves in the seasonal dynamics introduced before, where
the population alternates dispersal with seascape noise, and
local growth according to Eq. (20). As before, we restrict anal-
ysis to mean-field dispersion during the exploration phase,
leading to

dyi = D(ȳ − yi )dt + σydWi(t ), exploration
dyi = μyi(1 − yi/K ) f (yi )dt, growth . (21)

The exploration phase is again assumed to be long enough
to establish a power-law distribution for local numbers, as in
Eq. (11). With the mean set by 〈y〉 = ȳ ∝ ϒ (for � 
 ϒ), the
higher moments behave as

〈yn〉  �n−1−cD

n − 1 − cD
cDϒ1+cD ∝ �n−1−cD〈y〉1+cD . (22)

Notably, each higher moment has the same scaling with ȳ,
although the prefactors vary by powers of the upper cutoff �.

Following a localized growth step of duration 	t � μ−1,
the mean population is increased by 	t〈g(y)〉. Since g(y) can
be expanded as a power series g(y) = μy + g2y2 + g3y3 +
· · · , we obtain

〈g(y)〉 = μ〈y〉 − A(�)〈y〉1+cD + O(〈y〉2, 〈y〉2+cD ). (23)

Once again, averaging over the exploration distribution estab-
lishes a Richards growth law; the difference with the purely
logistic case is absorbed into the (cutoff dependent) coefficient
of the nonanalytic saturation term. We test this universality
by simulating seasonal growth with a quadratic f (y) curve in
Fig. 5.

C. Seascape Fisher equation in one and two dimensions

Armed with insights from the mean-field model, we now
return to the seascape Fisher Eq. (3). To do so, we numerically
simulate Eq. (3) using a central-difference discretization of the
Laplacian on a lattice. We observe that the mean population
can be well fit by a Richards curve, where the Richards expo-
nent and carrying capacity are numerically determined from
the data as in the mean-field case (Sec. IV A). As depicted
in Fig. 6 this procedure leads to a characterization of the one
dimensional growth with an emergent Richards shape parame-
ter of γ ≈ 1.75. The corresponding results in two dimensions
(for a square lattice and periodic boundary conditions) are
presented in Fig. 7 with shape parameter γ ≈ 1.71. Here,
we present these shape parameters as effective exponents de-
scribing particular simulations. Further investigation, possibly
following Refs. [58,84,91] may shed light on the values of this
exponent and its universality.
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FIG. 5. Numerical simulation of seasonal growth dynamics
with a deterministic phase of Eq. (20), with f (y) = 1 + 0.2y/K +
0.3(y/K )2. The blue circles show the value of the average population
at the end of each cycle, and the red dashed line shows the solution
to Eq. (19) with μ̃ = μ

1+Te/Tg
. We take the carrying capacity from the

numerics in order to find ã(�). The simulation used N = 220, μ = 1,
a = 10−3, σ = √

2, D = 0.6, � = 200, Tg = 0.1, and Te = 5.

D. Gompertz growth law for strong noise

We can rewrite Eq. (18) [see also Eq. (23)] as

	〈y(t )〉
	t

= 〈g(y)〉 = μ〈y〉
[

1 −
( 〈y〉

K

)cD
]
, (24)

in terms of a final capacity K . In the limit of strong seascape
noise, we have cD = 2D/σ 2 → 0, and if we let μ = μ̃/cD,
then Eq. (24) acquires the form

	〈y(t )〉
	t

= −μ̃〈y〉 ln

( 〈y〉
K

)
. (25)

The above form, known as the Gompertz equation, is another
commonly used growth law [1,2,13]. The qualitative predic-

FIG. 6. Emergence of Richards growth in simulations of the
seascape Fisher Eq. (3) in one dimension. Panel (a) compares the
simulated first moment to the solution of a Richards equation, with
a numerically fitted shape parameter γ . Panel (b) shows the relation
between the first and second moments on a log scale. The dashed
line shows the best fit power law m2 ∝ m2

γ . We simulate N = 220

nodes with μ = a = D = 2, σ = √
2, and dt = 1/200. Only times

after 4/μ were used to fit the Richards exponent.

FIG. 7. Emergence of Richards growth in simulations of the
seascape Fisher Eq. (3) in two dimensions. Panel (a) compares the
simulated first moment to the solution to the Richards equation, with
the shape parameter γ determined numerically. Panel (b) shows the
relation between the first and second moments on a log scale. The
dashed line show the best fit power law m2 ∝ m1

γ . We simulate a grid
of 210 × 210 nodes with μ = a = D = 1, σ = 2, and dt = 1/100.
Only times after 4/μ were used to fit the Richards exponent.

tion of the model is that the Gompertz law should emerge in
systems subject to strong seascape noise.

V. DISCUSSION

Growth and saturation phenomena are prevalent in na-
ture, necessitating a host of models and mathematical forms
to quantify their description. The Richards and Gompertz
laws stand prominently by providing successful empirical fits
to sigmoid curves in diverse contexts [1,2,4,6,7,12–15,19–
21,26]. A typical application involves data obtained by sum-
ming (averaging) numbers from a distributed data set. The
appearance and success of such nonanalytical forms in de-
scribing sums is quite surprising: In the same sense that the
probability distribution for the sum of many variables typi-
cally assumes the analytic Gaussian form, the most natural
time evolution for the sum is an analytic growth law (whose
first two terms form the logistic equation). A nonanalytic
series (much like a critical exponent in critical phenomena)
requires specific justification.

In this work, we argue that there is good theoretical
and numerical evidence to suggest that Richards-like growth
emerges as a natural consequence of the combination of
dispersion and (seascape) stochasticity in a large distributed
population. In steady state, the combination of the two es-
tablishes a broad power-law distribution at distinct locales;
averaging any analytic growth rule with such a distribution
leads to a nonanalytic Richards form. This argument, which
nicely connects distribution of local numbers to the time evo-
lution of the mean, however, relies on a form of quasistatic
evolution that cannot be rigorously justified except in the
case of a seasonal model that separates growth and stochastic
dispersion. Fortunately, our numerical results in a number of
cases other than the seasonal model suggest the broader appli-
cability of this result. We further suggest a scheme (plotting
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the second moment as a function of the mean) to test the
validity of our proposed mechanism.

Several aspects of the model require further study: While
the quasistatic arguments lead to a shape exponent of γ =
1 + 2D/σ 2, this is not the observed exponent even in the
mean-field limit with a finite μ. The complexities of an
evolving probability distribution invalidate the quasistatic re-
sult. It may be possible that a more delicate treatment of
the Fokker-Planck equation can help identify an effective
Richards exponent. The study of growth laws, or even statics,
for the seascape Fisher equation in finite dimensions is also
interesting, and may have connections to directed percolation
[92] and directed polymers in random media [93,94].

While uniform initial conditions are amenable to analysis,
the Fisher equation and its relatives are noted to have a number
of interesting traveling wave solutions [28,32]. However, we
are not aware of a study concerning the effect of seascape
noise on the shape and speed of such wave fronts. And while
we expect our results to hold true for some nonuniform ini-
tial distributions, the true limit of which conditions produce
Richards-like growth is unexplored, and may include wave
solutions. Such topics would require further study.

More complex connectivities are appropriate to social net-
works and spreading of contagions. Considering how the
Richards equation has seen a recent rebirth in epidemiol-
ogy and pandemic forecasting, it would be interesting to
see whether implementing seascape growth on such human
networks would generate relevant results. In particular, we
may explore the role of long-range interactions which may
be important to Richards growth [25,26].

While the most common modern use of the Richards equa-
tion is in epidemiology case studies, those tend to be out of
the scope of laboratory testing. To test this mechanism in
vitro, one avenue would be to use a bacterial population in a
well mixed fluid as a controllable realization of the mean-field
model. Perhaps local growth rates can be varied stochastically
by application of randomized light sources. The prediction of
the model is that upon increasing the strength of reproductive
noise, the overall growth curve will change from logistic to
Richards to Gompertz. However, practically measuring pop-
ulation in such a setup may be difficult, and the biochemical
realities of bacterial growth may mean they would not follow
logistic growth even in the absence of seascape noise.

It should be noted that our model does not necessarily
apply to every situation where Gompertz or Richards laws
have been found. While many real-world systems contain
migration and seascape noise, we would not expect the mech-
anism to apply to settings such as tumor progression [2] or the
growth profile of an individual plant [12–14], where Richards
law has been invoked. It is therefore likely that there are other
mechanisms that lead to the creation of Richards dynamics.
However, the ingredients posed in this paper—migration plus
seascape noise leading to power laws in moments—do in-
deed outline sufficient conditions for the presence of Richards
growth curves.
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APPENDIX A: NUMERICAL RECIPES

We describe here the numerical tools used to obtain the
simulation results. The integration of stochastic equations is in
general more difficult than the deterministic case. Determinis-
tic ODEs can be treated with a variety of robust, accurate, and
relatively simple methods, such as the fourth-order Runge-
Kutta approach. In the stochastic case, we employ a method
heavily inspired by that in Ref. [84]: The method we use
involves splitting up the dynamics of the stochastic PDE,

dy = (μy − ay2 + D∇2y)dt + σydW, (A1)

into pieces which can be solved individually. We first treat the
stochastic piece,

dy = σydW, (A2)

whose solution, starting from any initial configuration y(x, t ),
is a standard geometric Brownian motion,

y(x, t + dt ) = y(x, t ) exp

[
−σ 2

2
dt + σdW (x, t )

]
, (A3)

with dW (x, t ) ∼ N (0, dt ). Using the output of the stochastic
step we then use a standard Euler update rule,

y(x, t + dt ) = y(x, t ) + dtD∇2y(x, t ), (A4)

where ∇2y(x, t ) is the appropriate discretization of the Lapla-
cian on the given lattice. For mean field, ∇2y = ȳ − y, while
for a one dimensional lattice with unit spacing, ∇2y(x, t ) =
y(x + 1, t ) + y(x − 1, t ) − 2y(x, t ). Finally, we take the out-
put of this diffusion step and at each node apply a logistic
growth, according to

y(x, t ) = μeμt y(x, 0)

ay(x, 0)(eμt − 1) + μ
. (A5)

For a more complicated growth dynamics, such as what is
discussed in Sec. IV B, we will resort to using a routine
Runge-Kutta solver, as implemented in MATLAB’s ode45 func-
tion, to circumvent the lack of an available analytic solution.
MATLAB implementations of all routines discussed can be
found on GitHub [100].

APPENDIX B: SEASONAL GROWTH DYNAMICS

To analyze the dynamics of the seasonal model in Sec. III,
it suffices to understand the dynamics of how the mean
changes in a single growth phase. At the start of the phase,
we assume a distribution of the form ρ(y) ∝ ρ̂(y) = y−2−cD

for ϒ � y � �, and 0 otherwise.
The evolution of each node during the growth phase

follows a deterministic logistic growth. In particular, the pop-
ulation of a node after time Tg is given by

f (y; Tg) = y

e−μTg + (1 − e−μTg )(y/y f )
, (B1)

where y f = μ/a is the saturation for logistic growth. The
average population at the end of the growth phase is then
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obtained as

〈y(Tg)〉 = 〈 f (y; Tg)〉 =
∫

f (y; Tg)ρ̂(y)dy∫
ρ̂(y)dy

. (B2)

Therefore,

〈y(Tg)〉 = (1 + cD)eμTgM−cD

ϒ−1−cD − �−1−cD

∫ M/ϒ

M/�

xcD

x + 1
dx, (B3)

where we define M = y f /(eμTg − 1). It should be noted that
there is not a particularly convenient closed form for the
integral as presented. Moreover, since we assume 0 < cD <

1, the integral diverges as (Tg)−cD for small times, meaning
that it is sometimes more convenient to split the integral as∫

xcD/(x + 1) = ∫
xcD−1 − ∫

xcD−1/(x + 1). For example, in
the special case of � → ∞, then this manipulation would
become necessary, since the second integral would take on
a term of O(1) in time. This leads to an anomalous growth
term, where 〈y(t )〉 − 〈y(0)〉 ∝ t cD , which emphasizes the im-
portance of the upper cutoff.

If � is finite, and we only care about first order in time,
then we indeed can just take the expectation of both sides of
the logistic growth equation and find

〈y(Tg)〉 − 〈y(0)〉
Tg

= μ〈y(0)〉 − a〈y(0)2〉 + O(Tg). (B4)

Expanding the relevant integrals gives

	〈y〉
	t

= μϒ
cD + 1

cD

1 − (ϒ/�)cD

1 − (ϒ/�)1+cD

+ a
cD + 1

cD − 1

�1−cD

ϒ−1−cD

1 − (ϒ/�)1−cD

1 − (ϒ/�)1+cD
. (B5)

Since 1 − cD > 0 and � 
 ϒ , we can trivially expand this
out as

	〈y〉
	t

= μϒ
cD + 1

cD
[1 − (ϒ/�)cD ]

− a
1 + cD

1 − cD
�1−cDϒ1+cD [1 − (ϒ/�)1−cD ]

+ O[(ϒ/�)1+cD ], (B6)

which, if we neglect the higher order terms, returns us to
Eq. (18). Therefore, a Richards-like growth law is retrieved.

If we are interested in the limit of small cD, notice how
the first term of the expansion has a term like (1 − xcD )/cD.
Therefore, the limit becomes

lim
cD→0+

	〈y〉
	t

= lim
cD→0+

(μ〈y〉 − a〈y2〉)

= − μϒ
log(ϒ/�)

1 − ϒ/�
− a�ϒ, (B7)

which is difficult to rewrite in terms of 〈y〉 alone.

APPENDIX C: MOMENTS OF SEASCAPE DISPERSION

While not directly relevant to the study of scaling laws, for
completeness we include a study of the dynamics of the mo-
ments, which can be used to determine relevant timescales for
simulation. Let us consider a system under seascape noise and

FIG. 8. Dynamics of the first moment m1 = 〈y〉 using Eq. (D1)
for various strengths of demographic noise. Panels (a) and (b) show
the same data, but with alternate scales. Here we have a = 1, D =
0.8, σ 2 = 2, y(x, t = 0) = 0.002, N = 220, and dt = 0.0125. The
solid blue line has σ 2

d = 0.008, and the dotted green line has σ 2
d =

0.08. The dashed red line reproduces the Richards curve from the
σd = 0 case of Fig. 4. Notice how for small σd we match the Richards
curve, but we get notable deflection in small y when σd is large.

dispersion, much like the exploratory phase of the seasonal
model of Sec. III, with

dy = D(ȳ − y)dt + σydW. (C1)

By applying Itô’s lemma and taking the expectation of both
sides, we get a set of ordinary differential equations of the
form

∂t 〈ym〉 = Am〈ym−1〉 + Bm〈ym〉, (C2)

with Am = mDȳ and Bm = m[(m − 1)σ 2/2 − D]. Note that
each moment m depends only on itself and the moment m − 1,
meaning that this is a solvable system. For example, because
〈y(t )〉 = ȳ for all time, this implies that the second moment is
given by

〈y2(t )〉 =
(

h2 + 2Dȳ2

σ 2 − 2D

)
e(σ 2−2D)t − 2Dȳ2

σ 2 − 2D
, (C3)

where hm ≡ 〈ym(0)〉, and assuming generic values of σ and
D (such that the denominator is never 0). Notably, for cD =
2D/σ 2 < 1, this means that the second moment grows expo-
nentially. Given that the (m − 1)th moment is known, the mth
moment is given by

〈ym〉e−Bmt = hm + Am

∫ t

0
e−Bms〈ym−1(s)〉ds. (C4)

Assuming generic values of D and σ 2, this recursion relation
is solved by something of the form

〈ym〉 =
m∑

k=0

Cm,keBmt . (C5)

The coefficients Cm,k can be solved for exactly using induc-
tive methods, though such precision is mostly of specialized
use. More importantly, this relation means that each moment
above m = 1 experiences leading-order exponential growth,
with a growth rate of m[(m − 1)σ 2/2 − D] > 0 since cD < 1.
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Using this information, we can reasonably choose a befitting
timescale for the exploration phase.

APPENDIX D: DEMOGRAPHIC NOISE

In many cases, it is natural to study the effects of demo-
graphic noise on spatially extended populations [79]. Such
a consideration alters Eq. (3) with the addition of a term
σd

√
ydW ′ where dW ′ is a Brownian motion statistically inde-

pendent of dW . The stochastic Fisher equation then becomes

dy = μy − ay2 + D∇2y + σydW + σd
√

ydW ′. (D1)

The contribution due to demographic noise should become
more important than that due to seascape noise as y → 0.
Comparing the final two terms in Eq. (D1) gives that de-

mographic noise should be the dominant contribution when
y < σ 2

d /σ 2. Below this crossover threshold, the demographic
noise destroys the anomalous scaling in the moments as in
Eq. (14). Above this crossover threshold, we should have
that the seascape noise dominates and our anomalous scaling
(which provides the mechanism for Richards growth) will be
restored. We test this numerically by simulating the mean-
field limit of Eq. (D1) in Fig. 8, using the same conditions
as in Fig. 4. When σ 2

d /σ 2 is substantially larger than the
initial condition, then we get an initial altered growth phase
that deflects it away from the σd = 0 curve. If the ratio is
comparable or smaller to the current population, then growth
proceeds similarly to the pure seascape case. In this paper we
study growing populations and thus we ignore the contribu-
tions of demographic noise which will become negligible as
the population becomes large.
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