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Population extinction on a random fitness seascape
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We explore the role of stochasticity and noise in the statistical outcomes of commonly studied population
dynamics models within a space-independent (mean-field) perspective. Specifically, we consider a distributed
population with logistic growth at each location, subject to “seascape” noise, wherein the population’s fitness
randomly varies with location and time. Despite its simplicity, the model actually incorporates variants of
directed percolation, and directed polymers in random media, within a mean-field perspective. Probability
distributions of the population can be computed self-consistently, and the extinction transition is shown to
exhibit novel critical behavior with exponents dependent on the ratio of the strengths of migration and noise
amplitudes. The results are compared and contrasted with the more conventional choice of demographic noise
due to stochastic changes in reproduction.
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I. INTRODUCTION

The growth of spatially distributed populations is of impor-
tance to ecology, evolutionary biology, epidemiology, among
many other fields. One of the simplest models of a species or
pathogen propagating in space is the Fisher equation [1–5],
given by

dy(x, t )

dt
= μy − ay2 + D∇2y. (1)

At each spatial coordinate x, the population size y(x, t ) ini-
tially increases exponentially in time t , at a rate determined
by the fitness parameter μ > 0. This (logistic type) growth
is eventually slowed down by the nonlinear term, describing
resource limitations, with the population asymptoting to μ/a
(the capacity). Alternatively, for μ < 0, the population decays
to zero. The diffusion term D captures migration of the popu-
lation to nearby points in space.

Such deterministic evolution is only valid if reproductive
stochasticity is ignored. In particular, near extinction points
where the population hits zero (such as when a species suffers
ecological collapse or when a pathogen is without avail-
able hosts), the deterministic description does not capture the
stochasticity of small number fluctuations. Transitioning from
a model with a finite, discrete population into a continuum
formulation results in a noise of amplitude proportional to
the square root of the number of individuals. Including this
so-called demographic noise [6–11] leads to the stochastic
Fisher equation

dy = (μy − ay2 + D∇2y)dt + σd
√

ydW, (2)

with σd as the noise amplitude, and dW = dW (x, t ) being
a standard Wiener process. Models of this type have been
studied in a number of contexts outside of population growth,
thanks to connections to directed percolation [12–19] (with
the onset of laminar turbulence for μ = a = 0 [17] as a

recent application). Indeed, extinction transitions are expected
to generically belong to the directed percolation universality
class [20,21].

The main focus of this paper is on a different form of
noise. The implicit assumption of the Fisher equation is that
the fitness μ is an intrinsic property, uniform in time and the
same across all locations. In reality, the growth rate is strongly
influenced by external factors, such as nutrient level, light,
etc. at different times and places. Generalizing from a static
but position-dependent fitness landscape μ(x), a time-varying
fitness μ(x, t ) is commonly referred to as a seascape [22–27].
Population growth on a random seascape is thus governed by

dy = (μy − ay2 + D∇2y)dt + σydW, (3)

with σ 2 being the variance of the fitness noise, and dW =
dW (x, t ) a Wiener process as before. While there is natural
relevance in having environmental variation to be spatially
correlated [28–31], we will focus our efforts on the un-
correlated case. Note that for a = 0, the linear equation
describes the evolving weight y(x, t ) of a directed polymer
in a quenched random energy landscape [σdW (x, t )], with
ln y(x, t ) satisfying the Kardar-Parisi-Zhang equation, notable
in the study of surface growth problems [32–40]. Indeed,
the connection between the problem of directed polymers in
random media (DPRM) and the Fisher equation under “mul-
tiplicative” seascape noise has been noted before, and subject
to several numerical studies [14,41–43]. Multiplicative noise
has also turned up in studies of symmetry breaking [44,45],
theoretical ecology [8,46,47], and immunology [48].

While much studied, the problem of directed polymers
in random media is largely unsolved in other than one
dimension. Such limitations will necessarily extend to charac-
terizing the effect of a random seascape on a population in two
or more dimensions. We thus resort to replacing near-neighbor
migrations with jumps of arbitrary length. This “mean-field”
limit is reasonable for a well-mixed bacterial population, or
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for a pathogen infecting an active city. An alternative descrip-
tion is to replace continuous space with a series of nodes
indexed by k = 1, 2, . . . , N . If population yk of each node can
jump to any other node in the network at rate D/N , then (for
N � 1) evolution in a random seascape is described by

dyk = {μyk − ayk
2 + D(ȳ − yk )}dt + σykdWk, (4)

and similarly for demographic noise we have

dyk = {μyk − ayk
2 + D(ȳ − yk )}dt + σd

√
ykdWk, (5)

where ȳ = 1
N

∑
k yk is the spatial average, with dWk =

dW (k, t ) being spatiotemporal noise. In a sense, the diffusion
coefficient D now behaves like a mean-field coupling strength.
The problem can be solved exactly in this case, as for N → ∞
the probability distribution for ȳ converges to a δ-function, re-
ducing the above equations to those of independent variables
whose distributions can be obtained by standard methods.
The important population average ȳ is then computed self-
consistently.

We carry out this program below initially for seascape
noise in three cases: neural evolution (μ = a = 0) in Sec. II,
decaying population (μ < 0) in Sec. III, and saturating growth
(μ > 0, a > 0) in Sec. IV. For comparison, the cases of de-
mographic noise, as well as mixed demographic and seascape
noise, are studied Sec. V.

Despite the commonality in their deterministic parts, the
two types of stochastic noise relate to two quite distinct uni-
versality classes, that of directed polymers in random media
for Eq. (4) versus directed percolation for Eq. (5). As such,
we might expect them to exhibit different behaviors in the
all-important extinction regime. This is indeed the case: Near
the extinction threshold, we show that seascape noise leads
to a broadly distributed population, characterized by a tail
falling off as a power-law. The power-law exponent varies
continuously with σ 2/D such that, when the noise is large,
fluctuations in the population much exceed the mean. The
extinction transition no longer belongs to the (“mean-field”)
directed percolation universality class. However, as we show
in Sec. V, demographic noise restores the directed percolation
universality class.

II. NEUTRAL POPULATION FOR μ = a = 0

Many subtleties of seascape noise can be gleamed by con-
sidering Eq. (4) in the “neutral” case, given by

dyk = D(ȳ − yk )dt + σykdWk . (6)

The above equation can be interpreted as describing a form
of synchronization: each yk is being pulled toward the spatial
mean ȳ with strength D, but they are forced apart by the noise
σykdWk . The interplay between the two tendencies manifests
in the population variance, with one limiting form being a
“synchronized” population described by a tight distribution,
and the other being an “incoherent” population that is broadly
distributed [49,50].

While it would be interesting to analyze the case of a
finite N , computations simplify in the thermodynamic limit
of N → ∞ [51]. If we start with a uniform initial condition,
say yk (t = 0) ≡ y0 for all k, then the evolving probability
distributions of all individual members will be identical. Thus,
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FIG. 1. Simulated vs predicted probability distribution in the
steady state of Eq. (6). Circles show simulation results from 5 × 106

runs of Eq. (7), the solid line shows the prediction of Eq. (10),
while the dashed line emphasizes the large-y behavior from Eq. (11).
Simulation was run using the stochastic Runge-Kutta method, with
y0 = 1, D = 0.5, σ = 1.0, and μ = a = 0. The simulation ran for 25
time units, with a time step of 0.01.

if there exists some long-time stationary distribution with
finite mean, then this mean will be the same for each member.
So by simply applying the law of large numbers and taking
expectations, we obtain ȳ = 〈y〉 = y0. The second equality
follows from the conservation of average population in the
neutral limit, remaining at Ny0 at all times.

Therefore, the large-N dynamics are captured by the single
stochastic differential equation

dy = D(y0 − y)dt + σydW, (7)

independent of the spatial index k. From here, we can
construct a Fokker-Plank equation for the evolution of the
probability density function ρ(y, t ), namely

∂tρ = −∂y

[
D(y0 − y)ρ − σ 2

2
∂y(y2ρ)

]
. (8)

A stationary distribution (∂tρ ≡ 0) is obtained by setting
the probability current in the above square brackets to zero,
leading to

0 = y2ρ ′ + (cD + 2)yρ − cDy0ρ, (9)

where we define cD = 2D/σ 2. This is a solvable ordinary
differential equation, with a properly normalized solution
given by

ρ(y) = (cDy0)cD+1

�(cD + 1)
y−2−cD e−cDy0/y, (10)

which is a scaled inverse chi-squared distribution with ν =
2(cD + 1) and τ = y0cD/(1 + cD). This prediction agrees
with simulated infinite-N dynamics depicted in Fig. 1.

An important characteristic of this solution is the behav-
ior in the tail, where for large populations y, the density
behaves as

ρ ∝ y−2−cD ; (11)

this is confirmed in Fig. 2. Although stochastic population
models have produced power laws before [8,48,52–56], this
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FIG. 2. Simulated vs predicted power-law decays of the tail of
the probability distribution in the steady state of Eq. (6). Circles
show numerically obtained decay exponents from simulating 5 × 106

replications of Eq. (7); the solid line depicts the predicted decay
exponent at large y from Eq. (11); and the dashed line shows the
maximum error arising from measuring the exponent at finite y, as
predicted via Eq. (10). The simulation was run using the stochastic
Runge-Kutta method, with y0 = 1, D = 0.5, σ = 1.0, and μ = a =
0. The time step of integration was 0.01, with a total integration time
of 25 units. Regression to identify the decay rate of the PDFs began
at y∗ ≈ 13.34, and the final exponent was averaged over the final five
time units with samples every 0.05 time units.

result is distinctive in that the exponent varies continuously
with the migration rate D [57].

Even though the mean of the distribution stays at the initial
value of y0, the seascape fluctuations lead to a power-law tail,
which results in a variance (and higher moments) that may
either be finite or infinite. Specifically, we have

〈y2〉
〈y〉2

= 2D

2D − σ 2
, (12)

such that the variance becomes infinite when cD crosses 1, and
the population distribution becomes broad compared to the
mean. Parenthetically, we note that such a “transition” does
not occur in the case of demographic noise as described later
in the text.

III. DECAYING POPULATION FOR μ < 0

Now consider Eq. (4) in the presence of negative fitness
μ. The nonlinear term is now asymptotically irrelevant, as
can be seen by the transformation to z = ye−μt , such that the
dynamics in this “moving frame” become

dz = [−az2eμt + D(z̄ − z)]dt + σ zdW. (13)

Since μ < 0, the nonlinear term drops out at large times,
leaving us with

dz = D(z̄ − z)dt + σ zdW, (14)

which is simply the exact same dynamics as for μ = 0 in
Eq. (6). Therefore, the same long-time results hold in these
transformed coordinates. This includes the exact distribution
predicted in Eq. (10) as well as the moment ratio in Eq. (12),
as confirmed by the simulations depicted in Fig. 3. Therefore,
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FIG. 3. Simulated vs predicted probability densities for the de-
caying population; note the time-dependent horizontal axis. Circles
show simulation results from 5 × 106 runs of Eq. (4), the solid line
depicts the exact steady-state solution of Eq. (10), and the dashed line
shows the predicted large-y behavior from Eq. (11). Simulation was
run using the stochastic Runge-Kutta method, with y0 = 1, D = 0.5,
σ = 1.0, μ = −0.1, and a = 1. The time step of integration was
0.01, with a total integration time of 100 units.

while the mean population size decays exponentially, the ratio

〈y2〉
〈y〉2

= 2D

2D − σ 2
(15)

indicates that the mean ceases to be a good measure of the
distribution for 2D/σ 2 < 1.

IV. GROWING POPULATION FOR μ > 0

The most intricate case corresponds to when μ, a, D, and
σ are all strictly positive:

dyk = {μyk − ayk
2 + D(ȳ − yk )}dt + σykdWk. (16)

The intricacy arises as the noise modifies the mean value of y
from the bare value of μ/a. In reality, the dynamics of the
mean depend on the value of every higher moment. More
intuitively, note that the restoring force of the logistic growth
term is asymmetric, in that it “punishes” overly large values of
y harder than small ones. Under the effect of noise, this biases
y to smaller values, and we should expect the true value of 〈y〉
to be smaller than μ/a.

To properly analyze this case, we need to construct a
self-consistent solution in the long-time, large-N limit. As-
suming a long-time stationary distribution exists, and given
that every node has the same initial condition yk (t = 0) = y0,
then the uniformity of their stochastic dynamics indicates that
all nodes arrive to the same distribution ρ, for all k, i.e.,
ȳ = ∫

yρ(y)dy. The stationary distribution ρ(y) is obtained
by examining the Fokker-Plank equation associated with the
stochastic differential equation

dy = [μy − ay2 + D(ȳ − y)]dt + σydW, (17)

given by

∂tρ = −∂y

[
(μy − ay2 + D(ȳ − y))ρ − σ 2

2
∂y(y2ρ)

]
. (18)
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This move into simplifying the model via introducing a self-
consistency condition is well-precedented in the study of
stochastic PDEs [44,45,58,59]. It should also be noted that
because the coefficient of dt depends on ρ (via ȳ), this makes
the SDE (17) be classified as a McKean-Vlasov equation,
which should be expected considering the equation’s origins
in analyzing large numbers of weakly interacting particles
[60–64].

Setting the probability current in Eq. (18) to zero leads to
the ordinary differential equation

0 = y2ρ ′ + (2 + cD − cμ)yρ − cDȳρ + caρy2, (19)

where cD = 2D/σ 2, cμ = 2μ/σ 2, and ca = 2a/σ 2. This ad-
mits an unnormalized solution of the form

ρ̂(y) = e−cDȳ/ye−cayy−2−cD+cμ . (20)

Note that finite ȳ and a cut off power-law tails of the distribu-
tion for small and large y, respectively, so that all moments of
the distribution are now finite.

To convert Eq. (20) to a proper PDF, we need the normal-
ization factor

1Z =
∫ ∞

0
ρ̂(y)dy

= 2

(
ca

cDȳ

) 1+cD−cμ
2

K1+cD−cμ
(2

√
cDcaȳ), (21)

where Kγ is a modified Bessel function of the second kind.
The mean of the distribution is then given by

1〈y〉Z =
∫ ∞

0
yρ̂(y)dy

= 2

(
ca

cDȳ

) cD−cμ
2

KcD−cμ
(2

√
cDcaȳ), (22)

leading to the self-consistency equation

ȳ = cD

ca

( Kβ (2x)

Kβ+1(2x)

)2

, (23)

where we define β = cD − cμ and x = √
cDcaȳ for the sake of

convenience. The above equation can be solved numerically;
as depicted in Fig. 4, there is excellent agreement between
the thus analytically constructed PDF and the result from
numerical simulation.

A. Asymptotic behavior

Going beyond the numerical solution of the self-
consistency condition, we would like to gain analytic insight
into the behavior of the population, particularly close to the
extinction line. To do so, it is convenient to recast Eq. (23) as

x = cD
Kβ (2x)

Kβ+1(2x)
. (24)

The solution now explicitly depends on only two parameters,
as x = f (β, cD), and it can be plotted as in Fig. 5. Notably,
we focus on the region where x is small, hoping to construct
perturbative forms for small x ∝ √

ȳ.
As depicted in Fig. 5, the small x region spans two seg-

ments: one corresponding to extinction as μ → 0 along the
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FIG. 4. Simulated vs predicted probability densities for Eq. (17).
Circles show simulation results from 5 × 106 runs; the solid line
depicts the exact steady-state solution of Eq. (20). Simulation was
run using the stochastic Runge-Kutta method, with D = 0.5, σ = 1,
μ = 1, and a = 1. The value of ȳ was numerically decided in order
to obey the self-consistency condition in Eq. (23). The time step of
integration was 0.01, with a total integration time of 25 units.

line cD = β > 0, and another corresponding to cD → 0 for
β < 0 corresponding to ȳ → 0 as a → ∞. Only the former
is of interest, and for which we need the asymptotic behavior
of the right-hand side of Eq. (24) as x → 0. Not surprisingly,
given the power-law in Eq. (20), the expansion of Kβ/Kβ+1

for β > 0 is nonanalytic, and given by

Kβ (2x)

Kβ+1(2x)
� x

(
1

β
+ x2

β2(1 − β )
+ �(−β )

�(β + 1)
x2β

)
. (25)

The leading term in an expansion of Eq. (24) is thus cD/β,
indicating that a nonzero solution exists for cD/β > 1. How-
ever, the next-order term can be either x3 or x1+2β depending
on β, setting up two distinct singular behaviors:

-2 -1 1 2

4

3

1

0

μ < 0x < 1

x > 1

0

1

2

3

4

√
c
D
c
a ȳ
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FIG. 5. “Heat map” depicting the dependence of the self-
consistent mean ȳ from Eq. (23) on the parameters β and cD. The
dashed line marks the boundary of the region where μ < 0, and
the population goes extinct. The dash-dotted line shows where the
quantity x = √

cDcaȳ is less than 1, denoting the region where a
perturbative analysis may be appropriate. (The parameters a = 1 and
σ = 1 were used for this plot.)
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ȳ
ln

ȳ

FIG. 6. Singular behavior close to extinction as μ → 0. The
solid curve shows the predicted mean via root-finding on Eq. (23),
and the circles depict the simulated means obtained from using these
chosen values. The dashed curves show the small μ asymptotics
from Eq. (28) (exact prefactors given in Appendix A). Here, a = 1,
σ = 1, and ȳ is selected in line with the self-consistency condition
of Eq. (23). In the top panel (a), D = 1.0, so 2D > σ 2, while in (b),
D = 0.2, so 2D < σ 2. Numerical simulations used 5 × 104 replica-
tions with dt = 0.01 across 10 time units for (a) and 50 for (b), with
the last 2.5 units being used for sampling.

(i) For β > 1, balancing of the cubic and linear terms leads
to x2 � β(1 − β )cμ/cD. As μ → 0, the mean population size
thus vanishes as

ȳ = x2

cDca
� μ

a

(
1 − σ 2

2D

)
. (26)

This is the usual “mean-field” singularity close to the (directed
percolation) extinction transition for μ → 0, but with ampli-
tude reduced by σ 2/2D.

(ii) For β < 1, the linear term must be balanced with the
nonanalytical correction from x1+2β , resulting in x2β ∝ cμ.
Restoring the prefactors results in a leading singularity of the
form

ȳ = x2

cDca
� σ 4

4aD

(−�(cD)

�(−cD)

μ

D

) σ2

2D

. (27)

This is very interesting in that seascape noise with σ 2 > 2D
leads to a new universality class with the continuously varying
extinction exponent of (σ 2/2D) > 1.

Thus, excluding the exceptional point at β = 1, the singu-
lar behavior of the mean is summarized by

1ȳ ∝
{

μ, 2D > σ 2;

μσ 2/(2D), 2D < σ 2.
(28)

This is confirmed in Fig. 6, with one case having linear de-
pendence and the other exhibiting a power-law singularity.
To gain insight into this unusual scaling, note that averaging
Eq. (16) over noise, and using 〈y〉 = ȳ in the stationary regime,
immediately yields

μȳ = a〈y2〉 =
∫ ∞

0 y2ρ̂(y)dy∫ ∞
0 ρ̂(y)dy

∝
{

ȳ2, cD > 1;

ȳ1+cD , cD < 1.
(29)

As noted before, ρ̂(y) has a power-law form, y−2−cD (for
μ → 0), which is cut off by cDȳ at small y and (ca)−1 at large
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FIG. 7. The ratio of the second to squared-first moments near
the extinction transition μ → 0. The solid curve shows the predicted
moment ratio via root-finding on Eq. (23), and the circles depict the
simulated ratios obtained from using these chosen values. The dashed
curves show the small μ asymptotics from Eq. (30) (exact prefactors
given in Appendix A). Here, a = 1, σ = 1, and ȳ is selected in line
with the self-consistency condition of Eq. (23). In the top panel (a),
D = 1.0, so 2D > σ 2, while in (b), D = 0.2, so 2D < σ 2. Numerical
simulations used 2 × 106 replications with dt = 0.01 across 10 time
units for (a) and 50 for (b), with the last 2.5 units being used for
sampling.

y. The denominator of Eq. (29) is dominated by the short-
distance cutoff and scales as (cDȳ)−1−cD , while the numerator
may be governed by the small- or large-y cutoff depending on
whether 1 − cD is negative or positive. In the former case, the
numerator scales as (cDȳ)1−cD , while in the latter it scales as
ccD−1

a , leading to the proportionalities indicated in Eq. (29).
Solving for ȳ in the two cases then leads to the scalings in
Eq. (28).

The ratio 〈y2〉/〈y〉2 is a measure of the breadth of the
distribution. Keeping track of prefactors, as shown in full in
Appendix A, yields

〈y2〉
〈y〉2

= 2D

2D − σ 2
, 2D > σ 2;

〈y2〉
〈y〉2

∝ μ1−σ 2/(2D), 2D < σ 2. (30)

Note that this behavior smoothly connects to that obtained
previously for μ � 0: For 2D/σ 2 > 1, we obtain the same
finite ratio of 〈y2〉/〈y〉2 on both sides of the transition. For
2D/σ 2 < 1, the moment ratio diverges as μ → 0, matching
the infinite ratio from before. The difference in behavior is
clearly confirmed in Fig. 7. This suggests that parameter space
can be divided into two regions: one where the variance is
large compared to the mean, and one where they are compa-
rable. The line that separates these regions is set by the ratio
of the coupling D to the seascape noise variance σ 2, and is
schematically shown in Fig. 8. (Distinct singular behaviors
for moments or cumulants is typically associated with mul-
tifractality, and it has been observed in the critical behavior of
systems with quenched disorder [65,66].)
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FIG. 8. Phase diagram of Eq. (4) in the large-N limit. Extinction
occurs as μ → 0 (solid blue and black lines), with portions to the
right and left of the blue dot exhibiting distinct critical behaviors.
The vertical line extending from the dot to μ < 0 separates narrow
and broad probability distributions. Broad distributions extend to the
shaded region below the crossover (dashed) line, here obtained from
the condition [see Eq. (30 b)] μ1−σ 2/(2D) � 1.5.

V. DEMOGRAPHIC NOISE

We may well ask if the extinction transition described
above persists with the addition of demographic noise, i.e.,
for the equation

dyk = μyk − ayk
2 + D(ȳ − yk ) + σykdWk + σd

√
ykdW ′

k .

(31)

We first consider demographic noise by itself (with σ = 0),
and then the mixed case (σd �= 0 and σ �= 0).

A. Demographic noise with μ = 0

For μ = a = 0, because of the conserved form of the
deterministic part, ȳ = 〈y〉 = y0, leading to the stochastic dif-
ferential equation

dy = D(y0 − y)dt + σd
√

y dW. (32)

Then, following the same Fokker-Plank procedure as before,
we find the exact distribution for y as

ρ(y) = c′
D

c′
Dy0

�(c′
Dy0)

e−c′
Dyy−1+c′

Dy0 , (33)

with c′
D = 2D/σ 2

d . This is a so-called � distribution with a
shape parameter k = c′

Dy0 and a rate parameter λ = c′
D.

Note that the tail of this distribution at large y is exponen-
tial, as opposed to the power-law in the case of seascape noise.
This leads to well-behaved moments, and the moment ratio

〈y2〉
〈y〉2

= 1 + 1

y0

σ 2
d

2D
. (34)

As an aside, we note that for demographic noise the proba-
bility distribution is singular (albeit normalizable) for y → 0
(as may be seen in Fig. 9). Consequently, negative moments
〈y−m〉 are infinite for m > y0cD.
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FIG. 9. Simulated vs predicted probability densities for demo-
graphic noise. Circles show simulation results from 5 × 106 runs
of Eq. (32); the solid line depicts the exact steady-state solution
from Eq. (33). Simulation was run using the stochastic Runge-Kutta
method, with y0 = 1, D = 0.25, σ2 = 1.0, σd = 0.5, and μ = a = 0.
The time step of integration was 0.01, with a total integration time of
25 units.

B. Demographic noise with μ < 0

Since the population decays to zero, we can ignore the
quadratic term as before, and focus on the stochastic differ-
ential form

dyk = Dȳ(t ) − (D + |μ|)yk + σd
√

ykdW, (35)

with ȳ(t ) = y0e−|μ|t . For D = 0, random fluctuations at a par-
ticular location can set yk = 0 (an absorbing state). At any
time t , the global population is then composed of a het-
erogenous set of extinct nodes, and nodes with nonzero yk .
The initial probability distribution thus develops a δ-function
at the origin that gradually grows to encompass the entire
probability. A finite D acts as a source that feeds into the
population at each location, removing the possibility of local
extinction (say of an infection) [58,67,68]. This is despite
the fact that this source (from the global population) is it-
self decaying exponentially. Unlike other extinction models
(e.g., [69]), the overall population decay does not arise from
individual subpopulations going extinct, but rather from all
subpopulations decaying at an even pace. Moreover, while the
global decay rate is |μ|, Eq. (35) indicates that local nodes
relax in response to global and noise fluctuations at a more
rapid rate of (D + |μ|).

In the limit of D � |μ| we can take advantage of the
separation of timescales and assume local nodes arrive at a
quasisteady state. Ignoring the slow time dependence of ȳ(t ),
this quasisteady distribution is given by Eq. (33), with y0

replaced by ȳ(t ). A typical stochastic node trajectory can be
constructed by setting the left-hand side of Eq. (35) to zero;
the right-hand side admits a positive solution for

√
yk (t ) for

any realization of noise, given ȳ > 0.

C. Demographic noise with μ > 0

For μ > 0, we again assume uniformity and use the law of
large numbers to assert ȳ = 〈y〉. This reduces the problem to
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FIG. 10. “Heat map” depicting the dependence of the self-
consistent mean ȳ for demographic noise. The shade of the color
indicates the result for ȳ from Eq. (40). The dashed line indicates the
critical value of μc below which ȳ = 0 exactly. (Root-finding was
done with a = 1 and D = 1.5.)

a single stochastic differential equation

dy = {μy − ay2 + D(ȳ − y)}dt + σd
√

y dW. (36)

The stationary state of the corresponding Fokker-Plank equa-
tion satisfies

0 = yρ ′ + (c′
D − c′

μ)yρ + (1 − c′
Dȳ)ρ + c′

ay2ρ, (37)

where c′
a = 2a/σ 2

d . This admits an unnormalized solution of
the form

ρ̂(y) = y−1+c′
Dȳ exp

[
−(c′

D − c′
μ)y − c′

a

2
y2

]
. (38)

While the distribution still diverges as a power-law close to
the origin, a finite ȳ renders the PDF normalizable.

To compute the normalization and moments of the distri-
bution, we note the identity∫

ymρ̂(y)dy

= 1

2

(
σ 2

d

a

)z+ m
2
[
�

(
z + m

2

)
1F

1

(
z + m

2
,

1

2
, r2

)

+ 2r�

(
1 + m

2
+ z

)
1F

1

(
1 + m

2
+ z,

3

2
, r2

)]
, (39)

where r = (c′
μ − c′

D)/
√

2c′
a and z = c′

Dȳ/2, and 1F1 is the
Kummer confluent hypergeometric function. While more
cumbersome than in the seascape case, the mean can still be
obtained from the self-consistency condition

ȳ =
∫

yρ̂(y)dy∫
ρ̂(y)dy

(40)

by numerical and perturbative analysis, which is further de-
tailed in Appendix B.

However, unlike the case of seascape noise, a finite solution
for ȳ does not exist for all μ > 0. Instead, a critical value
of μc should be exceeded for a finite mean, as depicted in
Fig. 10. An implicit equation determining μc is provided in
Appendix C. In the limit of small noise, it leads to μc ∝ σ 2

d ,

0 0.25 0.75 1
0

1 (a) σ = 0

0 0.25 0.75 1
0

1
(b) σ �= 0

δμ

δμ

〈y
〉

〈y
〉

FIG. 11. Critical behavior close to extinction for both demo-
graphic noise [Eq. (36)] and mixed noise [Eq. (41)]. The solid curve
shows the predicted mean via root-finding on the appropriate self-
consistency equations, while the circles depict the simulated means
from the stochastic differential equations. The dashed curves mark
the predicted linear dependence close to the transition, with slopes
given in Appendixes B and D. Here, a = 1, D = 1, and ȳ is selected
to be in line with the appropriate self-consistency condition. In panel
(a), σ = 0 and σd = 1; in (b), σ = 1 and σd = 0.25. Numerical
simulations used 5 × 104 replications with dt = 0.01 across 10 time
units for (a) and 50 for (b), with the last 2.5 units used for sampling.

while for large noise μc ∝ σd
√

ln σd . To characterize critical
behavior near the extinction transition, we consider μ = μc +
δμ for δμ � μc. As indicated in the Appendixes, the self-
consistency condition of Eq. (40) yields an analytic expansion
in the vicinity of μc, which can be rearranged to yield ȳ ∝ δμ.
This behavior is confirmed numerically in Fig. 11(a).

We may also inquire about the behavior of higher mo-
ments. From averaging the equations of motion, it is easy to
check that 〈y2〉 = μ〈y〉/a. It can also be checked that (un-
like seascape noise) all moments vanish at criticality in the
same manner, i.e., 〈ym〉 ∝ 〈y〉 ∝ (δμ). Consequently, the ratio
〈y2〉
〈y〉2 diverges as 1/(δμ) on approaching μc, as depicted in
Fig. 12(a).

D. Combined demographic and seascape noise

The novel critical behaviors at extinction observed for
seascape noise thus give way to standard behavior of directed
percolation with demographic noise. It is thus important to
inquire about the nature of the transition when both demo-
graphic and seascape noise are present. Since each noise
component has an independent physical motivation, a mixed-
noise model is quite realistic, and has appeared in a number of
contexts [8,9,46,48,55]. The two noise elements can alterna-
tively be represented by a single noise, which, after replacing
ȳ for the population average, leads to the stochastic differential
equation

1dy = {μy − ay2 + D(ȳ − y)}dt

+
√

σd
2y + σ 2y2dW. (41)
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FIG. 12. Scaling of the moment ratio, 〈y2〉/〈y〉2, for both demo-
graphic noise [Eq. (36)] and mixed noise [Eq. (41)]. The solid curve
shows the predicted moments via root-finding on the appropriate
self-consistency equations, while the circles depict the simulation
results. The dashed curves mark the predicted small δμ scaling,
with exponent −1 and prefactors in Appendixes B and D. Here,
a = 1, D = 1.5, and ȳ is selected to be in line with the appropriate
self-consistency condition. In panel (a), σ = 0 and σd = 1; in (b),
σ = 1 and σd = 0.25. Numerical simulations used 2 × 104 replica-
tions with dt = 0.01 across 10 time units for (a) and 50 for (b), with
the last 2.5 units being used for sampling.

Analysis of the corresponding Fokker-Planck equation
leads to a stationary distribution proportional to

ρ̂(y) = y−1+ȳc′
D

(
y + σd

2

σ 2

)−1−ȳc′
D+cμ−cD+q

e−cay, (42)

where q = 2aσd
2/σ 4. Note that the (integrable) divergence

close to zero (proportional to y−1+ȳc′
D ) is identical to that of

pure demographic noise. On the other hand, the exponential
decay at large y is the same as that of seascape noise, although
the subleading power-law is modified by an additional power
of y1−ȳc′

D+q.
Since the extinction transition is dominated by the be-

havior for y close to zero, its critical behavior turns out to
be the same as that of demographic noise. Indeed, ȳ = 〈y〉
vanishes proportionately to δμ [as seen in Fig. 11(b)], and
the moment ratio, 〈y2〉/〈y〉2, still scales inversely with δμ [as
verified in Fig. 12(b)]. This is shown explicitly in Appendix D.
Such scaling exists regardless of the ratio of σd to σ , indi-
cating that any amount of demographic noise will destroy
the unusual extinction transition observed in the seascape
case. Thus the novel universality and broad distributions,
characteristic of seascape noise close to an extinction tran-
sition, disappear in the presence of (expected) demographic
noise.

VI. DISCUSSION

Both seascape fluctuations and demographic noise have
well-defined origins. The former arises from natural variations
in population fitness and access to resources, whereas the
latter is the result of moving from a discrete to a continuum
description. Both are unavoidable in real-world systems, and
neglecting one or the other can cause drastically incomplete

predictions of the breadth of a population. In particular,
seascape fluctuations broaden the tail of the distribution at
large values, while demographic stochasticity controls its be-
havior close to zero.

To understand the importance of seascape fluctuations, it is
instructive to consider Eq. (3) in the limit of a = 0 and D = 0.
At each point ln y now performs a random walk, resulting
in broad log-normal distributions for which characterizing
the population in terms of mean 〈y〉 and variance 〈y2〉c is
inadequate. A finite diffusion coefficient (still with a = 0) is
expected to modify the log-normal distribution. The resulting
behavior, in the universality class of directed polymers in
random media (DPRM), is highly dependent on dimensional-
ity: In one dimension it leads to the celebrated Tracy-Widom
distribution [35,38,70], while in dimensions larger than 2 a
critical value of Dc separates broad and narrow distributions
[33,40,71]. To circumvent difficulties associated with spatial
dimensionality, in this paper we consider a mean-field limit
[Eq. (4)] in which the parameter D accounts for migration
between any pair of sites, irrespective of their separation. In
this case, seascape noise of strength σ generates a power-law
tail in the distribution for large populations that falls off with
exponent 2 + 2D/σ 2. Much like the case of DPRM at high
dimensions, this signals a transition from broad to narrow
distributions for D > Dc = σ 2/2.

For a = 0, a finite μ simply makes the mean, ȳ, time-
dependent (proportional to eμt ) without modifying the shape
of the distribution. For μ > 0, a finite a is needed to curtail
the exponential growth of the population; a self-consistency
requirement now enables computing a stationary ȳ. The finite
a also leads to an exponential decay of the distribution at
large values, resulting in well-behaved moments. The most
interesting aspect of the problem is then the nature of the
extinction transition as μ → 0: For D > Dc, the mean (and
all other moments) vanish linearly with μ, as expected for
a mean-field extinction transition. However, for D < Dc the
mean vanishes as μσ 2/(2D), with higher moments vanishing
with other exponents (harking back to the broad distribution
expected for μ = 0).

While the above unconventional critical behavior is an
accurate description of Eq. (4) as μ → 0, its relevance to an
actual species extinction must also account for demographic
stochasticity. For D = 0, demographic noise in Eq. (5) is
incompatible with a continuous probability distribution, with
fluctuations causing local extinctions resulting in a growing
δ-function in the PDF at the absorbing point y = 0. A finite D
removes the δ-function by seeding new population at all sites
through migration from other sites, resulting in the steady-
state distribution of Eq. (33), with a normalizable divergence
at the origin. (For |μ| � D, the same distribution, albeit
with a time-dependent ȳ(t ), can be used to describe growing
or shrinking populations.) However, the boundary between
growth and extinction is no longer at μ = 0 in the presence of
demographic noise, and the self-consistency condition should
be used to identify a critical value of μc. The nature of the
extinction transition at μc is now conventional, belonging to
the expected directed percolation universality class. Finally,
we find that when both seascape and demographic noise are
present, the resulting extinction transition (at a finite μc) is
again conventional. This is not too surprising as extinction
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characterizes behavior when y → 0, where demographic fluc-
tuations are paramount.

The overarching theme of this investigation is the emphasis
on the need to characterize the full distribution of a population
and not just its mean. In the course of this investigation, in
the mean-field limit, we have encountered a few distribu-
tions of some repute: For seascape noise, a scaled inverse
chi-squared distribution appears; for demographic noise, a
� distribution shows up, and when both noises are mixed
(for μ = a = 0), a rescaled β prime distribution manifests.
The special functions characterizing these distributions are
typically solutions of relatively simple differential equations.
In our context, these equations appear naturally in computing
steady states of Fokker-Planck equations, providing examples
of their applicability.

The Covid-19 epidemic has motivated myriad current stud-
ies of spread and control of epidemics [72–75]. With notable
exceptions (e.g., Ref. [69]), most studies follow a number
of time-dependent quantities that are implicitly assumed to
characterize the whole distribution. The approach of this
paper can be used to examine actual distributions via the
self-consistency condition in the mean-field limit, for multiple
stochastic equations, generalizing Eq. (41). Even for a single
quantity, we may generalize the exponent of the stabilizing
nonlinear term from 2 to an arbitrary α. This is not without
motivation, since instead of an embedded logistic equation
at every point in space, we would now have a Richards’
equation. The Richards’ equation acts as a generalization of
logistic growth, and it has been used in a variety of ecological
models [76,77]. Indeed, most results presented in this paper
have natural generalizations for α > 1, including correspond-
ing distributions. The most notable complexity arises in the
self-consistency equation for the mean, which requires numer-
ical analysis and lacks closed forms.

Another interesting query is the applicability of the mean-
field results to the finite dimensional extinction problem.
There is a certain richness of dimensional dependence in
directed percolation models, but we may nonetheless expect
some qualitative behavior in the mean-field case to carry over
to finite dimensions [18]. For example, in the important cases
of one and two dimensions, the limiting distribution for a = 0
arising from Eq. (3) is always broad. It would be interest-
ing to investigate the nature of the extinction transition with
seascape noise (with and without demographic noise) in these
dimensions.

Finally, we note that certain predictions in this model may
be experimentally replicable. Well-mixed microbial popula-
tions are often represented via a mean-field migration model,
which we employ here. While tracking entire distributions is
cumbersome (albeit not impossible), the mean and standard
deviation of the population should be relatively easy to track.
Our model predicts that the ratio of these quantities makes
a dramatic change, passing from finite to very large as the

strength of seascape noise is increased above a threshold
value. The fitness of a population can be controlled via the
resources afforded to the microbes, and local fluctuations in
this quantity can be constructed by randomizing access to
resources (e.g., light levels). While the results presented in
this paper may not be robust to various perturbations, an ex-
periment probing the effects of seascape fluctuations in fitness
should yield highly informative results.
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APPENDIX A: MOMENTS FOR SEASCAPE NOISE

We will elaborate upon the case of seascape noise with
positive fitness, that is,

dy = [μy − ay2 + D(ȳ − y)]dt + σydW, (A1)

with μ > 0. In the main body of the paper we find that, in the
appropriate limit, the distribution of y is proportional to

ρ̂(y) = e−cDȳ/ye−cayy−2−β, (A2)

where we used the law of large numbers to assert ȳ = 〈y〉.
We further define cD = 2D/σ 2, ca = 2a/σ 2, and β = 2(D −
μ)/σ 2.

To get the right normalization Z for the distribution, and
to choose a self-consistent value of ȳ, we need to use the
unnormalized moments∫ ∞

0
ymρ̂(y)dy = 2

(
ca

cDȳ

)(1+β )/2

Kβ+1(2
√

cDcaȳ). (A3)

Therefore, we have that√
ca

cD
ȳ = Kβ (2

√
cDcaȳ)

Kβ+1(2
√

cDcaȳ)
, (A4)

as the self-consistent restriction on 〈y〉 = ȳ.
Because we have assumed that ȳ = 〈y〉 and ȳ is constant

in time, we can take the expectation of both sides of the
dynamics to get μ〈y〉 = a〈y2〉. Therefore, we have that

〈y2〉
〈y〉2

= μ/a

〈y〉 . (A5)

So if we want to understand the ratio 〈y2〉/〈y〉2 in the extinc-
tion limit, that is, as μ → 0 and ȳ → 0, then all we need to do
is understand the asymptotics of (A4) alone.

For the sake of brevity we will define x = √
cDcaȳ. The

most convenient form of K, the modified Bessel function of
the second kind, is

2Kβ (2x) = π/2

sin(πβ )

∞∑
m=0

x2m−β

m!�(m − β + 1)

− π/2

sin(πβ )

∞∑
m=0

x2m+β

m!�(m + β + 1)
. (A6)
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Thus, limiting to the lowest-order terms in x, the right-hand side of Eq. (A4) becomes

1
Kβ (2x)

Kβ+1(2x)
� (−1)

(
x−β

�(−β + 1)
+ x−β+2

�(−β + 2)
− xβ

�(β + 1)
− xβ+2

�(−β + 2)

)

×
(

x−β−1

�(−β )
+ x−β+1

�(−β + 1)
− xβ+1

�(β + 2)
− xβ+3

�(β + 3)

)−1

. (A7)

Disambiguating which terms are actually most relevant
depends on the choice of β, with there being three regimes
of note. We shall elaborate on each of these in turn.

1. β > 1

In this case, the x−β and x−β+2 terms dominate the numer-
ator of (A7), whereas the denominator is dominated by the
x−β−1 and x−β+1 terms. Therefore, we find that

Kβ (2x)

Kβ+1(2x)
� x

β

(
1 + x2

β(1 − β )

)
. (A8)

Since x ∝ √
ȳ, the

√
ȳ on the left-hand side of Eq. (A4)

cancels out the leading x, hence the need to include the
second-order correction. From here, we can easily solve for
ȳ to get

ȳ � μ

D

β(β − 1)

c2
D

. (A9)

Expanding β in the small-μ limit then leads to

ȳ � μ

a

(
1 − σ 2

2D

)
, (A10)

which is linear in μ, as stated in the main text. Moreover, we
get

〈y2〉
〈y〉2

= 2D

2D − σ 2
+ O(μ), (A11)

which is consistent with the results from the μ = 0 analysis
for 2D > σ 2.

2. −1 < β < 1

Here, the numerator of (A7) is dominated by the xβ and x−β

terms, and the only term from the denominator that survives
is the x−β−1 term. So

Kβ (2x)

Kβ+1(2x)
� x

β

(
1 + �(−β )

�(β )
x2β

)
. (A12)

The leading x cancels out the ȳ on the left-hand side of (A4),
leaving us with the mean being set by

ȳ � 1

cacD

(−�(β )

�(−β )

μ

D

)1/β

. (A13)

In the small μ limit, β → cD, so the lowest-order behavior in
μ is given by

ȳ � 1

cacD

(−�(cD)

�(−cD)

1

D

)1/cD

μ1/cD . (A14)

So if |β| < 1, the mean goes as μσ 2/(2D). Moreover, the mo-
ment ratio is given by

〈y2〉
〈y〉2

� cD
1+1/cD

(−�(−cD)

�(cD)

)1/cD

cμ
1−1/cD . (A15)

This provides all the prefactors neglected in the main body,
Eq. (30).

3. β < −1

For this region, the numerator of (A7) is dominated by the
xβ and xβ+2 terms, and the denominator is dominated by the
xβ+1 and xβ+3 terms. So

Kβ (2x)

Kβ+1(2x)
� −(β + 1)

x

(
1 + x2

(β + 1)(β + 2)

)
. (A16)

As before, the second-order expansion is required. Solving for
ȳ gives us

ȳ = −(β + 1)(β + 2)

ca(β + 2 + cD)
, (A17)

and therefore

〈y2〉
〈y〉2

= β

β + 1

(
1 + cD

β + 2

)2

. (A18)

Unlike the previous two cases, there is no need to do a
small-μ analysis here. The only way for β = cD − cμ to be
negative is for μ to be greater than D. This is not possible
in the limit of small μ, so this regime is irrelevant for our
purposes.

APPENDIX B: MOMENTS FOR DEMOGRAPHIC NOISE

Here, we will show the extinction behavior of our mean-
field model under demographic noise. In particular, we will
look at

dyk = [μyk − ayk
2 + D(ȳ − yk )]dt + σd

√
ykdWk . (B1)

As before, we use the law of large numbers to assert that
the ensemble average, spatial average, and initial condition
are identical. If this holds true, then there is some stationary
density ρ that is identical for every yk , and we can transform
the above equation into a Fokker-Planck equation, where

0 = −∂tρ = ∂y{[μy − ay2 + D(ȳ − y)]ρ}. (B2)

This simplifies to

0 = yρ ′ + (1 − cDȳ)ρ + (cD − cμ)yρ + cay2ρ, (B3)

with c′
D = 2D/σd

2, c′
μ = 2μ/σd

2, and c′
a = 2a/σd

2 as usual.
This admits an unnormalized solution of the form

ρ̂(y) = y−1+c′
Dȳ exp[−(c′

D − c′
μ)y − (c′

a/2)y22]. (B4)
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To get the moments of y, it is expedient to define z = Dȳ/σd
2 and r = (−D + μ)/

√
aσd

2. Using these definitions, we find
that

1ȳ =
∫

yρ̂(y)dy∫
ρ̂(y)dy

=
√

2

c′
a

�
(

1
2 + z

)
1F1

(
1
2 + z, 1

2 , r2
) + 2r�(1 + z) 1F1

(
1 + z, 3

2 , r2
)

�(z) 1F1
(
z, 1

2 , r2
) + 2r�

(
1
2 + z

)
1F1

(
1
2 + z, 3

2 , r2
) , (B5)

where 1F1 is the Kummer confluent hypergeometric function.
We want our analysis to take place near μ = μc, so ȳ

should be close to zero. The most practical way to analyze
the extinction behavior is to look at both the numerator and
denominator of the expression (B5) for ȳ in the limit of small
z, since if ȳ is small, then so is z ∝ ȳ. Specifically, we have

ȳ �
√

2

c′
a

A + Bz

Ez−1 + F
, (B6)

where A, B, E , and F are constants obtained by expanding in
z, with A and B given by

1A =er2√
π[1 + erf(r)], (B7)

B = − er2
γE

√
πerf(r) + √

π
(1,0,0)

1F
1

(
1

2
,

1

2
, r2

)

+ √
π�P(0, 1/2)er2 + 2r

(1,0,0)

1F
1

(
1,

3

2
, r2

)
, (B8)

and E and F are given by

1E =1, (B9)

F = − γE + πerfi(r) + (1,0,0)

1F
1

(
0,

1

2
, r2

)
, (B10)

with �P being the polygamma, erf the error function, erfi
the imaginary error function, and γE ≈ 0.577 is the Euler-
Mascheroni constant.

Using these approximate forms, it is easy to see that

ȳ = −2

c′
D

c′
DA − √

2c′
aE

c′
DB − √

2c′
aF

. (B11)

Let us assume that μc is the critical value of μ where ȳ goes
from zero to nonzero. The above form allows us to obtain the
critical μ, since it implies that μc must satisfy c′

DA = √
2c′

a,
or √

a

π

σd

D
= er2

c [1 + erf(rc)], (B12)

with rc = (−D + μc)/
√

aσd
2.

If we are instead interested in the behavior of the mean near
zero, then we can substitute μ = μc + δμ for infinitesimal
δμ, and find

ȳ = −2δA

c′
DB − √

2c′
aF

δμ, (B13)

where

δA = 2√
aσd

− 2π (D − μc)

aσd
2

erc
2
[1 − erf(−rc)]. (B14)

This means that our predicted mean for demographic noise
scales as ȳ ∝ δμ = μ − μc near extinction, with a slope that
is exactly predictable from the above equation.

By taking the expectation of both sides of the dynamics,
we attain 〈y2〉 = (μ/a)〈y〉. So if we plug this into 〈y2〉/〈y〉2

and only keep the lowest-order terms in δμ, we get

〈y2〉
〈y〉2

= μc + δμ

aȳ
∝ 1

δμ
. (B15)

Therefore, unlike in the case of seascape noise, the moment
ratio always diverges as 1/δμ.

APPENDIX C: μc FOR DEMOGRAPHIC NOISE

Here we will find approximate forms for the critical fitness
μc, at which the mean population goes from zero to nonzero.
In the previous Appendix, we demonstrated that Eq. (B12)
sets the condition for μc. If we let rμ = μc/(σd

√
a) and rD =

D/(σd
√

a), then this condition can be written as

1

rD
√

π
= e(rμ−rD )2

[1 + erf(rμ − rD)], (C1)

where erf is the error function. In the following, we exam-
ine separately the large and small noise limits of the above
equation.

1. σd � 1

Since rD ∝ 1/σd , we might expect this quantity to be small.
Let us assume that rμ is large, and further that rμrD is small.
These conditions can be checked for self-consistency at the
end.

Taking these assumptions in hand, we have

1
1√
πrD

= e(rμ−rD )2
[1 + erf(rμ − rD)] � 2er2

μ . (C2)

By assumption, we were allowed to neglect the e−2rμrD term,
as well as approximate the error function by a constant. We
now obtain rμ �

√
− ln(2

√
πrD), and therefore we obtain

μc � σd

√
− ln

(
2

√
π

a

D

σd

)
. (C3)

Notice that rμ ∝ √
ln(σd ) and rμrD ∝ ln(σd )/σd , making our

initial assumptions self-consistent.

2. 0 < σd � 1

An efficient way to rewrite Eq. (C1) is

1

rD
√

π
= erfcx(rD − rμ), (C4)
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in terms of the scaled complementary error function, erfcx.
Since σd is small, rD is necessarily large. If we assume rμ is
small, then we can take the first-order Taylor series of erfcx to
get

1rμ = −(
√

πrD)−1 + erfcx(rD)

erfcx′(rD)

= −(
√

πrD)−1 + erfcx(rD)

−2/
√

π + 2rDerfcx(rD)

= 1

2rD
. (C5)

Since rD is large, rμ is small and self-consistent, leading to

μc = a
σ 2

d

2D
. (C6)

Another way to prove this case is by using the fact that c′
D

is large, so we can approximate the unnormalized distribution
(B4) by

ρ̂(y) � y−1+c′
Dȳe−c′

Dy. (C7)

The second moment is exactly solvable here, with 〈y2〉 =
ȳ2 + ȳ/c′

D. If we then take the expectation of both sides of
the dynamics (B1) and plug in the second moment, we find
that

∂t ȳ =
(

μ − a

c′
D

)
ȳ − aȳ2. (C8)

This suggests that ȳ converges to zero whenever μ < a/c′
D,

which retrieves the equation for μc (C6).
So for small noise, the critical fitness scales as σ 2

d , but for
large noise it scales as σd

√
ln(σd ), as described in the main

body of the paper.

APPENDIX D: MOMENTS FOR MIXED NOISE

Here, we look at the case with mixed seascape and demo-
graphic noise, that is,

dy = [μy − ay2 + D(ȳ − y)]dt +
√

σ 2y2 + σ 2
d ydW, (D1)

where σ and σd are the respective amplitudes of seascape and
demographic noises. As always, we assume uniform initial
conditions and the existence of a stationary distribution ρ with
a self-consistent mean 〈y〉 = ȳ. By transforming the above
into a Fokker-Planck equation, we find the unnormalized sta-
tionary distribution

ρ̂(y) = e−cayy−1+z′
(y + s)−1−t−z′

, (D2)

where ca = 2a/σ 2, s = σ 2
D/σ 2, z′ = 2Dȳ/σd

2, q = 2aσ 2
d /σ 4,

and t = 2(D − μ)/σ 2 − q.
To get the self-consistent mean, we need to use the follow-

ing equation:

ȳ = s sin(πt )

π

�(t )�(1 + z′) 1F1 (1 + z′, 1 − t, q) + qt�(−t )�(1 + t + z′) 1F1 (1 + t + z′, 1 + t, q)

−�(z′) 1FR
1 (z′,−t, q) + q1+t�(1 + t + z′) 1FR

1 (1 + t + z′, 2 + t, q)
, (D3)

with 1F1 being the Kummer hypergeometric function and 1FR
1

being its regularized version. In the extinction limit, ȳ must be
small, and so z′ should be too. In such a limit, we find

ȳ � s sin(πt )

π

A′ + B′z′

E ′/z′ + F ′ , (D4)

which simplifies into

ȳ � −σ 2
d

2D

2D sin(πt )A′ − πσ 2E ′

2D sin(πt )B′ − πσ 2F ′ , (D5)

where

1A′ = − teqqt�(−t )�(t ) + eqqt�(−t )�(1 + t )

+ teqqt�(t )�(−t, q), (D6)

B′ = teqγE�(t )qt�(−t ) − teqγ qt�(t )�(−t, q)

+�(t )1
R
F
1

(1,0,0)

(1, 1 − t, q)

+ eqqt�P(0, 1 + t )�(−t )�(1 + t )

+ qt�(−t )�(1 + t )1
R
F
1

(1,0,0)

(1 + t, 1 + t, q), (D7)

E ′ = − 1/�(−t ), (D8)

F ′ =γ /�(−t ) +
∫ q

0
ut eudu − 1

R
F
1

(1,0,0)

(0,−t, q), (D9)

where γE ≈ 0.577 is the Euler-Mascheroni constant, �P is the
polygamma, and �(x, y) is the incomplete gamma function∫ ∞

y ux−1e−udu.
We can then assert that there is some μc (with correspond-

ing tc) where the mean transitions from zero to nonzero. Given
this, and assuming μ = μc + δμ, with cδμ = 2δμ/σ 2, we find
for small δμ that

ȳ � πδE ′ + πcD cos(tcπ )A′ − cD sin(πtc)δA′

c′
D sin(πt )B′ − πc′

DF ′ cδμ, (D10)

where cD = 2D/σ 2, c′
D = 2D/σ 2

d ,

1δA′ = −eqqtc{�(tc)�(−tc, q)

+�(tc)�(−tc, q)[tc ln(q) + tc�P(0, tc)]

−�(−tc)�(tc)[1 + tc�P(0, tc)]

+�(−tc)�(tc)tc�P(0, 1 + tc)

− tc�(tc)�(1,0)(−tc, q)}, (D11)

052106-12



POPULATION EXTINCTION ON A RANDOM FITNESS … PHYSICAL REVIEW E 102, 052106 (2020)

and

δE ′ = �P(0,−tc)/�(−tc). (D12)

In particular, this means that near extinction, the mean scales
as ȳ ∝ μ − μc, with the scaling slope known from the above.

As in the previous seascape and demographic noise cases,
we can attain the second moment simply by taking the

expectation of both sides of the dynamics to get 〈y2〉 =
(μ/a)〈y〉. From here it is easy to see that

〈y2〉
〈y〉2

∝ 1

ȳ
∝ 1

δμ
. (D13)

So despite the presence of seascape noise, the scaling of the
moment ratio near extinction is identical to the purely demo-
graphic noise case.
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