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Introduction

Nearly everyone is unhappy with the rage-induc-
ing congestion that plagues their city roads. 
Improving the traffic situation on a city-wide scale 
is a difficult task, due to public policy factors and 
many conflicting interests. Here, we address only 
one aspect of the problem: optimizing the timing of 
traffic lights. The challenge appears simple, but it 
turns out to be a rich problem that presents an 
opportunity for substantial theoretical analysis.

We start by modeling a two-way street. 
Assume that all cars exist on a ring with evenly-
spaced traffic lights, and an equal number of cars 
are present on both sides of the street. The cars 
are granted instantaneous acceleration from zero 
to velocity V, which is constant across all cars. 
Next, imagine each traffic light as an arrow 
rotating continuously around a circle (Fig. 1). The 
light is red when the arrow is in the red half of the 
circle, and green when it is in the green half. The 
angle of the arrow is its phase, and we let 0 to  
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Visual representation of a two-way 

street. A car moves at velocity V 

between two traffic lights in time 

TC. Traffic lights are depicted as 

rotating arrows with angular veloc-

ity , and complete one full cycle 

in time TL. The phase of each traffic 

light is delayed from the previous 

one by a time Td. 

Figure 1.

Table 1.

Key variables used in the theoretical 

model and simulation. 

radians denote green and  to 2  radians denote 
red. The time it takes for each arrow to complete 
full cycle is the period, TL, which implies an 
angular frequency  (Table 1).

The interesting part of the problem comes 
from modifying the initial phases of the lights. Let 
TC be the time it takes for a car to travel between 
two lights, and Td be the time delay between the 
phases of two adjacent lights. If the Td for every 
pair of lights is equal to TC, then we achieve a 
“green wave”: a driver never sees more than one 
red light, and his takeout food is still warm when 
he gets home. This is optimal. However, suppose 
Td were larger than TC by the constant value TL / 2. 
Now, our driver hits every red light on the road and 
has to wait the entire half-cycle before moving 
again. This suboptimal “red wave” leaves him 

nothing but frustration and cold, mushy takeout.
Therefore, holding Td constant between 

all the lights allows us to span the best and worst 
case scenarios. If we take r = TL / TC and rd = Td / 
TC, then the entire system is described with two 
parameters. Since Td < TL by definition, it follows 
that 0 < rd < r. Also, we tend to assume r > 1. Note 
that for cars going the reverse direction, the phase 
difference between consecutive lights is the 
opposite of what the forward direction experienc-
es. Thus, their effective rd becomes r – rd. This 
means that it is generally impossible to set up a 
green wave in both directions, so maximizing 
efficiency for the whole street is a messy affair. 

At first, it appears that the overall system is 
best served by giving one direction a perfect 
green wave and forgetting about the other side. 
But […] we actually do better by sacrificing 
some of the efficiency in one direction for 
improved conditions in the reverse direction.
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Figure 2. a Figure 2. b

Travel efficiency versus rd at two fixed values of r. 

1001 values of rd were sampled on each plot. The red 

and green curves show the efficiency of cars moving 

to the right and left, respectively. The black curve 

is the average of the green and red curves.  

Figure 2.

Producing a chimera state in a ring 
of traffic lights is tricky, but 
could potentially lead to significant 
improvements in efficiency for cars 
travelling in both directions.

average velocity function in terms of r and rd, 
giving us

We can normalize this expression into an efficiency 
value, because we know the maximum and 
minimum possible speeds. Vavg cannot be greater 
than V, the average speed during a green wave. 
Likewise, it cannot be less than the red-wave 
speed, which is given by (V × TC) / (TC + TLt / 2).
 
Figs. 2a and 2b plot efficiency versus rd for forward 
and reverse traffic, as predicted by this model, for 
two different values of r. The curve for cars going 
in the forward direction is the horizontal mirror of 
the curve for the reverse direction. Let us recall the 
discussion of red and green waves. We would 
predict that the velocity of the leftwards car is 
maximized at rd = 1 and minimized at rd = r/2 + 1, 
and that the velocity of the rightwards car is 
maximized at rd = r – 1 and minimized at rd = r/2 – 1. 
Both plots reflect this prediction. An unexpected 
feature is the second maximum, which occurs just 
beyond the red wave minimum. Here, each light 
turns red just after the car travels through it – a 
careful distinction that is, as one might imagine, 
highly sensitive to perturbations. Examining the 
average curve, we realize something curious. At 
first, it appears that the overall system is best 
served by giving one direction a perfect green 
wave and forgetting about the other side. But in 
2a, we actually do better by sacrificing some of the 
efficiency in one direction for improved conditions 
in the reverse direction. This compromising 
behavior is worth noting, and should be investi-
gated upon future work.
 

Mathematical Modeling

We start by trying to predict how the average 
speed of a car varies with rd, for a fixed r. 
Constraining the value of r lets us limit the range 
of rd, as noted before. Let us begin by considering 
just one car. The average speed of the car is 
defined as the distance traveled over time, or in 
other words,

We want to rewrite Eq. 1 in terms of the param-
eters of our model. It is clear that the Time Moving 
is simply equal to the travel time between lights 
(TC) times the number of lights passed, henceforth 
known as NLT. Now, let us find the Total Time – the 
sum of the time moving and the time spent at a 
red light. When the car reaches the NLT th light, it’s 
journey will end if the light is red; that is, if the 
phase of this light mod 2  is between  and 2  
radians. If we take Z to be some integer, and  to 
be the phase difference between consecutive 
lights, then the inequality

must be satisfied for the car to stop. Because we 
are looking for the furthest that the car can travel 
under our constraints, we must find the most 
restrictive (i.e. smallest) integer value for NLT. By 
letting M = r / (1 – rd), we have that 

must hold as well.

It is possible to solve Eq. 3 for NLT in terms of M. 
After doing so, we find that the Total Time is equal 
to Z × TL + NLT × Td. This allows us to rewrite the 
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Creating a Simulation

To confirm these theoretical results with simula-
tions, adaptive time steps are needed to accurately 
record the time spent waiting at a red light or 
travelling between lights. We begin by simulating 
the “bosonic” case, where the cars do not interact 
with one another. With some slight modifications, 
we can extend this simulation to the more realistic 
“fermionic” situation, in which the cars cannot 
pass through one another.

Bosonic
Since the cars in the bosonic model have no 
interaction with one another, it suffices to simulate 
just one car on a ring of 500 lights for 5000 arbi-
trary time units. A plot of the simulation efficiency 
versus the model-predicted efficiency is shown in 
Fig. 3. The bosonic simulation aligns almost 
perfectly with the model.

Fermionic
As it turns out, two cars in the real world usually 
cannot occupy the same place at the same time. 
How can we tell if our predictions are still valid for 
cars with non-zero densities? Addressing this 
question requires a proper simulation of the 
situation, in which cars cannot pass one other. We 
expect that as more cars are added to the system, 
the average velocity will monotonically decrease. 
Moreover, we expect that cars will start piling up 
behind red lights, resulting in an additional time 
delay in reaching the next light. If the first car in 
the line barely makes it through a green light, all of 
the following cars will not. This should result in a 
smoothing of discontinuities in the efficiency graph,
especially in the peak right before the red wave.

The plots of fermionic simulation efficiency versus 
model-predicted efficiency in Figs. 4a and 4b 
confirm these predictions. 1250 and 6500 cars were 
simulated on a ring of 500 lights that could support 
a maximum of 12500 cars. The large number of 
cars means that multiple parts of the system are 
being sampled at once; thus, the simulation only 
needed to be run for 450 arbitrary time units (as 
opposed to 5000 previously) for convergent 
behavior to be observed.

Because making a full efficiency versus rd

graph can be taxing at high densities, it is more 
efficient to hold rd constant and vary the number of 
cars in the system. Fig. 5 shows the effects of 
increasing the number of cars for a fixed r and rd on 
the average car speed. Even for a frustratingly high 
traffic density, Fig. 5a shows that there is little lost 
in the way of speed until a critical transition point. 
The critical point arises when so many cars have 
backed up behind a red light that it takes multiple 
cycles of the light before a car can pass. This is 
called a “jamming transition”. No complete theory 
currently exists for the locations of the critical 
point given a value of rd. Part of the problem is 
that, as mentioned before, certain rd values 
produce ideal results that are highly sensitive to 
perturbations. So even though velocity graphs 
made with these values do contain a transition, the 
curve is rounded off as seen in Fig. 5b. This makes 
it difficult to determine the true critical point. 
Sometimes, as in Fig. 5c, this decay causes a 
secondary transition that makes critical point 
detection even harder. All the transitions that are 
clean enough to estimate a critical point are 
plotted in Fig. 6.
 

Simulated efficiency data (red) superimposed on the 

analytic efficiency curve (blue) for Bosonic traf-

fic in one direction. Cars were simulated on a loop 

of 500 lights for 5000 arbitrary time units. 1001 

equally spaced values of rd were taken at r = 7.5, TC

= 1. Frustration refers to a boundary effect which 

has little effect on the overall performance.

Figure 3.
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simulated on a ring of 500 lights that could support 
a maximum of 12500 cars. The large number of 
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Figure 4. a Figure 5. a

Figure 5. b

Figure 4. b

Figure 5. c

Simulated efficiency data (red) superimposed on the 

analytic efficiency curve (blue) for fermionic traf-

fic in one direction. The simulated road was a ring 

of 500 lights with room for 12500 cars. 1250 cars 

were simulated in 4a, and 6500 cars were simulated in 

4b. In both simulations, 101 values of rd are simu-

lated at r = 7.5 and TC = 2 for 450 time units.

Figure 4.

Figure 5 a, b, c. The value of rd is held constant at 

three different values. Plots show the average car 

velocity versus number of cars. Simulations were run 

in a system with a maximum capacity of 12500 cars, 

with r = 7.5 and TC = 2. 76 simulations were each run 

for 500 arbitrary time units.

Figure 5.
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If light i has phase i and natural frequency i, 
then its behavior is described by

If the lights all have the same and start at 
random phases, a Kuramoto model predicts that 
the lights will eventually attain identical phases for 
any nonzero K – a drab result.[1] If the coupling 
decays with distance, however, the results are 
intriguing. With the right initial conditions, then 
we may arrive at a “chimera state”, in which the 
lights are divided into two categories: coherent 
oscillators (which move together) and incoherent 
oscillators (which move in a randomized fashion).[2]

Producing a chimera state in a ring of traffic lights 
is tricky, but could potentially lead to significant 
improvements in efficiency for cars travelling in 
both directions.
 

 
 
Future work

The results presented cover only a fraction of 
possible questions. But the model is fully set up to 
address many different optimization problems.

In the real world, cars travel at different speeds. 
How does randomness affect the efficiency of the 
cars? Since the simulated traffic is moving around 
a ring, all the cars would likely bunch up behind 
the slowest moving car. These results would be 
uninteresting and uninformative. More meaningful 
results can be obtained if the cars re-randomize 
their velocities periodically throughout the 
simulation. However, we predict that this random-
ization will not drastically alter the shape of the 
efficiency graph. 

A more exotic possibility is to change the funda-
mental behavior of the lights, which is the long-
term goal of this research. Under the new schema, 
each light would be coupled to every other light in 
the following manner. For a system with N lights, 
we define a coupling strength K and a phase delay . 

i ht ll h th d t t t

Figure 6. Estimated critical densities at various 

values of rd. These values were inferred from plots 

similar to the one in Fig. 5a.

Figure 6.
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