Optimizing Traffic Flow in Usban Settings

Figure 1.

Visual representation of a two-way

 street. A car moves at velocity V between two traffic lights in time Tc. Traffic lights are depicted as fotating afrows with angular veloc ity ω, and complete one full cycle in time T. The phase of each traffic one by a time T_{d}.

Table 1.

Key variables used in the theoretical model and simulation.

Variable Definition
V Speed of a car in motion
$V_{\text {avg }}$ Average car speed, or $V \times$ (Time Moving)/(Total Time)
$N_{L T}$ The number of lights a car has passed
$\omega \quad$ Angular frequency of each traffic light
$T_{L} \quad$ Time for a traffic light to complete one full cycle
$T_{C} \quad$ Time for a car to travel between two lights
T_{d} Delay time between lights
T_{L} / T_{C}
$r_{d} \quad T_{d} / T_{c}$
$M \quad r /\left(1-r_{d}\right)$

```
At first, it appears that the overall system is
best se\rhoved by giving one direction a perfect
g^een wave and forgetting about the other side.
But [...] we actually do betteء by sacrificing
some of the efficiency in one direction for
improved conditions in the reverse dicection.
```

radians denote green and π to 2π radians denote red. The time it takes for each arrow to complete full cycle is the period, TL, which implies an angular frequency ω (Table 1).

The interesting part of the problem comes from modifying the initial phases of the lights. Let Ic be the time it takes for a car to travel between two lights, and $T d$ be the time delay between the phases of two adjacent lights. If the T_{d} for every pair of lights is equal to $T c$, then we achieve a "green wave": a driver never sees more than one red light, and his takeout food is still warm when he gets home. This is optimal. However, suppose T_{d} were larger than T_{c} by the constant value $T_{L} / 2$ Now, our driver hits every red light on the road and has to wait the entire half-cycle before moving this Thist "red wav" leaves him
nothing but frustration and cold, mushy takeout. Therefore, holding Ta constant betwee all the lights allows us to span the best and worst case scenarios. If we take $r=T \mathrm{~L} / T_{\mathrm{C}}$ and $\mathrm{rd}=T_{\mathrm{d}} /$ $T \mathrm{c}$, then the entire system is described with two parameters. Since $T_{\mathrm{d}}<T_{\mathrm{L}}$ by definition, it follows hat $0<r d<r$. Also, we tend to assume $r>1$. Note hat for cars going the reverse direction, the phas difference between consecutive lights is the opposite of what the forward direction experiences. Thus, their effective rd becomes $r-r d$. This means that it is generally impossible to set up a green wave in both directions, so maximizing efficiency for the whole street is a messy affair

Producing a chimesa state in a fing of traffic lights is tricky, but could potentially lead to significant impsovements in efficiency for cafs travelling in both directions.

Figure 2

Travel efficiency versus rd at two fixed values of

1001 values of ra were sampled on each plot. The red
to the
is the average of the green and red curves.

Mathematical Modeling

We start by trying to predict how the average speed of a car varies with r d, for a fixed r. Constraining the value of r lets us limit the range of rd, as noted before. Let us begin by considering just one car. The average speed of the car is defined as the distance traveled over time or in other words,

$$
V_{\text {avg }}=\frac{V \times(\text { Time Moving })}{(\text { Total Time })} \quad \text { (Eq. 1) }
$$

We want to rewrite Eq. 1 in terms of the parameters of our model. It is clear that the Time Moving is simply equal to the travel time between lights (Tc) times the number of lights passed, henceforth known as Nir. Now, let us find the Total Time - the sum of the time moving and the time spent at a red light. When the car reaches the $N_{\text {Lr }}$ th light, it's journey will end if the light is red; that is, if the phase of this light mod 2π is between π and 2π radians. If we take Z to be some integer, and $\Delta \Phi$ to be the phase difference between consecutive lights, then the inequality
$(2 Z-1) \pi<\Delta \phi \times N_{L T}+\omega \times$ (Time Moving) $<2 \pi Z \quad$ (Eq.2)
must be satisfied for the car to stop. Because we are looking for the furthest that the car can travel under our constraints, we must find the most restrictive (i.e. smallest) integer value for $N_{\text {Lr. }}$ By letting $M=r /(1-r d)$, we have that

$$
Z=\text { ceiling }\left(\frac{N_{L T}}{M}\right)=\text { floor }\left(\frac{N_{L T}}{M}+\frac{1}{2}\right)
$$

$$
(\mathrm{Eq} .3)
$$

must hold as well.
It is possible to solve Eq. 3 for $N_{\text {Lr }}$ in terms of M. After doing so, we find that the Total Time is equal to $Z \times T_{\mathrm{L}}+N_{\mathrm{Lr}} \times T_{\mathrm{d}}$. This allows us to rewrite the
average velocity function in terms of r and $r d$, giving us

$$
V_{\text {vug }}=\frac{V \times \times \operatorname{ceiling}\left(\frac{N_{L l} I T}{M}\right)+r_{d} \times N_{L r}}{}
$$

(Eq.4)

We can normalize this expression into an efficiency value, because we know the maximum and minimum possible speeds. Vavg cannot be greater than V, the average speed during a green wave. Likewise, it cannot be less than the red-wave speed, which is given by $(V \times T \mathrm{C}) /\left(T_{\mathrm{C}}+T_{\mathrm{Lt}} / 2\right)$.

Figs. 2a and 2 b plot efficiency versus rd for forward and reverse traffic, as predicted by this model, for two different values of r. The curve for cars going in the forward direction is the horizontal mirror of the curve for the reverse direction. Let us recall the discussion of red and green waves. We would predict that the velocity of the leftwards car is maximized at $r d_{d}=1$ and minimized at $r d=r / 2+1$ maximized at $r_{d}=r-1$ and minimized car is maximized at $I d=r-1$ and minimized atrd $=r / 2$ foape is the ond paximum, which ocelled beyond the red wave minimum. Here, each light turns red just after the car travels through it -a ereful distinction that is, as one might imagie highly sensitive to perturbations. Examining the average curve, we realize something curious. At first, it appears that the overall system is best served by giving one direction a perfect green wave and forgetting about the other side. But in 2 a , we actually do better by sacrificing some of the efficiency in one direction for improved conditions in the reverse direction. This compromising behavior is worth noting, and should be investigated upon future work.
\square

Creating a Simulation

To confirm these theoretical results with simulations, adaptive time steps are needed to accurately record the time spent waiting at a red light or trave "bosing between lights. We begin by simulating with one another With some slight modifications we can extend this simulation to the more realistic "fermex" sitution, in wich the pass through one another.

Bosonic

Since the cars in the bosonic model have no interaction with one another, it suffices to simulate just one car on a ring of 500 lights for 5000 arbitrary time units. A plot of the simulation efficiency ersus the model-predicted efficiency is shown perfectly with the model

Fermionic

As it turns out, two cars in the real world usually cannot occupy the same place at the same time. How can we tell if our predictions are still valid for cars with non-zero densities? Addressing this question requires a proper simulation of the situation, in which cars cannot pass one other. We expect that as more cars are added to the system, the average velocity will monotonically decrease, behind red lights, resulting in additional time delay in reaching the next light if the first car in delay ine reaching the t though the following cars will not This should result in a smoothing of discontinuities in the effciency craph sespecially in the peak right before the red wave.

The plots of fermionic simulation efficiency versus model-predicted efficiency in Figs. 4 a and 4 b confirm these predictions. 1250 and 6500 cars were smuated on a ring of 00 lights that could suppor cars means that multiple parts of the system are being sampled at once: thus, the simulation only needed to be run for 450 erbitrary time units (as oposed to 5000 previously) for convergent opposed to to be observed.

Because making a full efficiency versus rd graph can be taxing at high densities, it is more efficient to hold ra constant and vary the number of cars in the system. Fig. 5 shows the effects of cars in the system. Fig. 5 shows the effects of increasing the number of cars for a fixed r and $r d$ on the average car speed. Even for a frustratingly high traffic density, Fig. 5a shows that there is little lost in the way of speed until a critical transition point. The critical point arises when so many cars have backed up behind a red light that it takes multiple cycles of the light before a car can pass. This is called a "jamming transition". No complete theory currently exists for the locations of the critical point given a value of rd. Part of the problem is that, as mentioned before, certain r_{d} values produce ideal results that are highly sensitive to perturbations. So even though velocity graphs made with these values do contain a transition, the curve is rounded off as seen in Fig. 5b. This make It difficult to determine the true critical point. secondary transition that makes critical point detection even harder All the transitions that olean enough to 6 timate a ritical point plotted in Fig. 6.

Figuse 3.
Simulated efficiency data (red) superimposed on the analytic efficiency curve (blue) for Bosonic traffic in one direction. Cars were simulated on a 10
of 500 lights for 5000 arbitrary time units. 1001 equally spaced values of $r d$ were taken at $r=7.5$, Io $=1$. Frustration refers to a boundary effect which has little effect on the overall performance.

Figure 4. a
ค

Fioure 5 ,

Figuee 5. b

Figure 5. ©
Sinulated
 analytic efficiency curve (blue) for fermionic tras analytic efficiency curve (blue) for fermionic traf-
fic in one dicection. The simulated coad was a ring of 500 lights with foom for 12500 cars. 1250 cars were simulated in 4 a, and 6500 cars were simulated in 4b. In both simulations, 101 values of $r d$ are simuLated at $y=7.5$ and $T C=2$ for 450 time units.

Figuse 5.
Figure $5 \mathrm{a}, \mathrm{b}, \mathrm{c}$. The value of rd is held constant at three different values. Plots show the average cas velocity versus number of cars. Simulations were su in a system with a maximum capacity of 12500 cars, with $r=7.5$ and $T c=2.76$ simulations were each run for 500 arbitrary time units.

Future work

The results presented cover only a fraction of possible questions. But the model is fully set up address many different optimization problems.

In the real world, cars travel at different speeds. How does randomness affect the efficiency of the cars? Since the simulated traffic is moving around a ring, all the cars would likely bunch up behind the slowest moving car. These results would be uninteresting and uninformative. More meaningful results can be obtained if the cars re-randomize periodically throughout the simulation. However, we predict that this randomization will not drastically alter the shape of the efficiency graph.

A more exotic possibility is to change the fundamental behavior of the lights, which is the longterm goal of this research. Under the new schema, each light would be coupled to every other light in the following manner. For a system with N lights, we define a coupling strength K and a phase delay

If light \boldsymbol{i} has phase $\Phi \boldsymbol{i}$ and natural frequency ωi then its behavior is described by

$$
\frac{d \phi_{i}}{d x}=\omega_{i}+\frac{K}{N} \sum_{j=1}^{N} \sin \left(\phi_{j}-\phi_{i}+\alpha\right) . \quad \text { Eq. } 5
$$

If the lights all have the same ω and start at random phases, a Kuramoto model predicts that the lights will eventually attain identical phases for any nonzero $K-a$ drab result. (11) If the coupling decays with distance, however, the results are may . With the right initial conditions, then lights are divided into two categories: coherent oscillators (which move together) and incoherent oscillators (which move in a randomized fashion). [2] Producing a chimera state in a ring of traffic lights is tricky, but could potentially lead to significant improvements in efficiency for cars travelling in both directions.

Acknowledgements
I would like to thank Daniel Abrams, Mark
Panaggio, the Student Faculty Programs office of Caltech, and Northwestern University. I would also like to thank the Mellon Mays Fellowship for their continued support.

Furtheء Reading

1. Strogatz, Steven. From Kuramoto to Crawfrord: exploring the onset of synchronization in popula tions of coupled oscillators, Physica D, 143:1-20 2000
2. Abrams, D.M., Rennie Mirollo, Steven H

Strogatz, and Daniel A. Wiley. Solvable model for chimera states of coupled oscillators. Physical Review Letters, 101(8):084103, 2008.

Zestifilarice': reinventing tradifonal unceramiting Jsing Google-style machine leaming rechniques and Gypi.al One-style credi. storing.

We are lcoki"ŋַ lon Lracy arnatl, Lrealive th inken

Yiverill the: lame cio al Givyle. Apply kexary a.

Software Englneers

Business Analysts

Machine Learning Experts

Mathematical Modelers

Big Data Underwriting zest finance

丸 Institute for Defense Analyses

broaden your perspective
 IDA
 yourcres - yor hation

IDA is seeking highly qualitied individuals with PhD or MS degrees

 Acceccents will be subiect io a

IDA

CALLING ALL INVENTIVE STUDENTS!
The Lemelson-MIT National Collegiate Student Prize Competition is open to students nationwide who have inventions in one of two categories:

"Use it! onsumer devices and tools)

SISK to the wining individual graduate student in wach categon S10K to the winning undergraduate team in esch category
Apply by: December 31, 2013 http://mit.edu/invent/studentprize
LEMELS N-MIT

